Averbuch Tauben, Sullivan Kristen, Sauer Andrew, Mamas Mamas A, Voors Adriaan A, Gale Chris P, Metra Marco, Ravindra Neal, Van Spall Harriette G C
Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
Department of Cardiology, University of Kansas Health System, Kansas City, KS, USA.
Eur Heart J Digit Health. 2022 May 13;3(2):311-322. doi: 10.1093/ehjdh/ztac025. eCollection 2022 Jun.
Machine learning (ML) is a sub-field of artificial intelligence that uses computer algorithms to extract patterns from raw data, acquire knowledge without human input, and apply this knowledge for various tasks. Traditional statistical methods that classify or regress data have limited capacity to handle large datasets that have a low signal-to-noise ratio. In contrast to traditional models, ML relies on fewer assumptions, can handle larger and more complex datasets, and does not require predictors or interactions to be pre-specified, allowing for novel relationships to be detected. In this review, we discuss the rationale for the use and applications of ML in heart failure, including disease classification, early diagnosis, early detection of decompensation, risk stratification, optimal titration of medical therapy, effective patient selection for devices, and clinical trial recruitment. We discuss how ML can be used to expedite implementation and close healthcare gaps in learning healthcare systems. We review the limitations of ML, including opaque logic and unreliable model performance in the setting of data errors or data shift. Whilst ML has great potential to improve clinical care and research in HF, the applications must be externally validated in prospective studies for broad uptake to occur.
机器学习(ML)是人工智能的一个子领域,它使用计算机算法从原始数据中提取模式,在无需人工输入的情况下获取知识,并将这些知识应用于各种任务。对数据进行分类或回归的传统统计方法在处理低信噪比的大型数据集时能力有限。与传统模型相比,机器学习依赖的假设更少,可以处理更大、更复杂的数据集,并且不需要预先指定预测变量或相互作用,从而能够检测到新的关系。在这篇综述中,我们讨论了在心力衰竭中使用机器学习及其应用的基本原理,包括疾病分类、早期诊断、失代偿的早期检测、风险分层、药物治疗的最佳滴定、设备的有效患者选择以及临床试验招募。我们讨论了如何使用机器学习来加速学习型医疗系统的实施并缩小医疗差距。我们回顾了机器学习的局限性,包括在数据错误或数据偏移情况下不透明的逻辑和不可靠的模型性能。虽然机器学习在改善心力衰竭的临床护理和研究方面具有巨大潜力,但这些应用必须在前瞻性研究中进行外部验证,以便广泛应用。