Suppr超能文献

基因组评估方法包括中间相关特征,如高通量或组学表型。

Genomic evaluation methods to include intermediate correlated features such as high-throughput or omics phenotypes.

作者信息

Legarra A, Christensen O F

机构信息

GenPhySE (Genetique, Physiologie et Systemes d'Elevage), INRA, 31326 Castanet-Tolosan, France.

Center for Quantitative Genetics and Genomics, Aarhus University, 8830 Tjele, Denmark.

出版信息

JDS Commun. 2022 Dec 1;4(1):55-60. doi: 10.3168/jdsc.2022-0276. eCollection 2023 Jan.

Abstract

Gene expression is supposed to be an intermediate between DNA and the phenotype, and it can be measured. Thus, for a trait, we may have intermediate measures, which are in fact a series of genetically controlled traits. Similarly, several traits may be measured or predicted using infrared spectra, accelerometers, and similar high-throughput measures that we will call "omics." Although these measurements have errors, many of them are heritable, and they may be more accurate or easier to record than the trait of interest. It is therefore important to develop methods to use intermediate measurements in selection. Here, we present methods and perspectives for selection based on massively recorded intermediate traits (omics). Recent developments allow a hierarchical integrated framework for prediction, in which a trait is partially controlled by omics. In addition, the omics measures are themselves partly controlled by genetics ("mediated breeding values") and partly by environment or residual factors. Thus, a part of the genetic determinism of a trait is mediated by omics, whereas the remaining part is not mediated, which results in "residual breeding values." In such a framework, genetic evaluations consist of 2 nested genomic BLUP-based models. In the first, the effect of omics on the trait (which can be seen as an improved estimate of the phenotype) and the residual breeding values are estimated. The second model extracts the mediated breeding values from the improved estimate of the phenotype, considering that omics themselves are heritable. The whole procedure is called GOBLUP (genomics omics BLUP) and it allows measures in only some individuals; that is, it is a "single-step"-like method. In this model, heritability is split into "mediated" and "not mediated" parts. This decomposition allows us to predict how accurate the omics measure of the trait would be compared with the direct measure. The ideal omics measure is heritable and explains a large part of the phenotypic variation of the trait. Ideally, this could be the case for some traits with low heritability. However, even if the omics measure explains only a small part of the phenotypic variation, when omics measurement themselves are heritable, the use of such a model would lead to more accurate selection. Expressions for upper bounds of reliability given omics measurements are also presented. More studies are needed to confirm the usefulness of omics or high-throughput prediction. Usefulness of the technology likely needs to be checked on a case-by-case basis.

摘要

基因表达被认为是DNA与表型之间的一个中间环节,并且是可以测量的。因此,对于一个性状,我们可能有中间测量值,而这些中间测量值实际上是一系列受基因控制的性状。同样,我们可以使用红外光谱、加速度计以及类似的高通量测量方法(我们将其称为“组学”)来测量或预测多个性状。尽管这些测量存在误差,但其中许多是可遗传的,而且它们可能比感兴趣的性状更准确或更易于记录。因此,开发在选择中使用中间测量值的方法很重要。在此,我们介绍基于大量记录的中间性状(组学)进行选择的方法和观点。最近的进展使得能够构建一个分层的综合预测框架,其中一个性状部分地由组学控制。此外,组学测量值本身部分地由遗传学控制(“介导育种值”),部分地由环境或残余因素控制。因此,一个性状的部分遗传决定性是由组学介导的,而其余部分则不是由组学介导的,这就产生了“残余育种值”。在这样一个框架中,遗传评估由两个基于基因组最佳线性无偏预测(GBLUP)的嵌套模型组成。在第一个模型中,估计组学对性状的影响(这可以看作是对表型的一个改进估计)以及残余育种值。第二个模型从表型的改进估计中提取介导育种值,因为组学本身是可遗传的。整个过程称为基因组组学最佳线性无偏预测(GOBLUP),它只允许对部分个体进行测量;也就是说,它是一种类似“单步”的方法。在这个模型中,遗传力被分解为“介导的”和“未介导的”部分。这种分解使我们能够预测与直接测量相比,该性状的组学测量会有多准确。理想情况下,组学测量是可遗传的,并且能够解释该性状表型变异的很大一部分。理想情况下,对于一些遗传力较低的性状可能就是这种情况。然而,即使组学测量仅解释了表型变异的一小部分,当组学测量本身是可遗传的时候,使用这样一个模型也会导致更准确的选择。文中还给出了在有组学测量值的情况下可靠性上限的表达式。需要更多的研究来证实组学或高通量预测的有用性。该技术的有用性可能需要逐案进行检验。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f5e/9873823/f52d3bf5610d/fx1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验