Suppr超能文献

β-内酰胺酶家族预测工具:一种用于预测和分类β-内酰胺酶类别、亚类和家族的在线工具。

β-LacFamPred: An online tool for prediction and classification of β-lactamase class, subclass, and family.

作者信息

Pandey Deeksha, Singhal Neelja, Kumar Manish

机构信息

Department of Biophysics, University of Delhi South Campus, New Delhi, India.

出版信息

Front Microbiol. 2023 Jan 12;13:1039687. doi: 10.3389/fmicb.2022.1039687. eCollection 2022.

Abstract

β-Lactams are a broad class of antimicrobial agents with a high safety profile, making them the most widely used class in clinical, agricultural, and veterinary setups. The widespread use of β-lactams has induced the extensive spread of β-lactamase hydrolyzing enzymes known as β-lactamases (BLs). To neutralize the effect of β-lactamases, newer generations of β-lactams have been developed, which ultimately led to the evolution of a highly diverse family of BLs. Based on sequence homology, BLs are categorized into four classes: A-D in Ambler's classification system. Further, each class is subdivided into families. Class B is first divided into subclasses B1-B3, and then each subclass is divided into families. The class to which a BL belongs gives a lot of insight into its hydrolytic profile. Traditional methods of determining the hydrolytic profile of BLs and their classification are time-consuming and require resources. Hence we developed a machine-learning-based method, named as β-LacFamPred, for the prediction and annotation of Ambler's class, subclass, and 96 families of BLs. During leave-one-out cross-validation, except one all β-LacFamPred model HMMs showed 100% accuracy. Benchmarking with other BL family prediction methods showed β-LacFamPred to be the most accurate. Out of 60 penicillin-binding proteins (PBPs) and 57 glyoxalase II proteins, β-LacFamPred correctly predicted 56 PBPs and none of the glyoxalase II sequences as non-BLs. Proteome-wide annotation of BLs by β-LacFamPred showed a very less number of false-positive predictions in comparison to the recently developed BL class prediction tool DeepBL. β-LacFamPred is available both as a web-server and standalone tool at http://proteininformatics.org/mkumar/blacfampred and GitHub repository https://github.com/mkubiophysics/B-LacFamPred respectively.

摘要

β-内酰胺类是一类具有高安全性的抗菌剂,使其成为临床、农业和兽医领域使用最广泛的类别。β-内酰胺类的广泛使用导致了被称为β-内酰胺酶(BLs)的β-内酰胺酶水解酶的广泛传播。为了中和β-内酰胺酶的作用,新一代的β-内酰胺类药物被开发出来,这最终导致了一个高度多样化的BLs家族的进化。基于序列同源性,BLs在安布勒分类系统中被分为四类:A-D。此外,每个类别又细分为家族。BL所属的类别能让人深入了解其水解特征。传统的确定BLs水解特征及其分类的方法既耗时又需要资源。因此,我们开发了一种基于机器学习的方法,名为β-LacFamPred,用于预测和注释安布勒类、亚类以及96个BL家族。在留一法交叉验证期间,除了一个模型外,所有β-LacFamPred模型隐马尔可夫模型(HMMs)的准确率均为100%。与其他BL家族预测方法进行基准测试表明,β-LacFamPred是最准确的。在60种青霉素结合蛋白(PBPs)和57种乙二醛酶II蛋白中,β-LacFamPred正确预测了56种PBPs,且没有将任何乙二醛酶II序列预测为非BLs。与最近开发的BL类别预测工具DeepBL相比,β-LacFamPred对BLs进行的全蛋白质组注释显示假阳性预测的数量非常少。β-LacFamPred既可以作为网络服务器使用,也可以作为独立工具使用,分别可在http://proteininformatics.org/mkumar/blacfampred和GitHub仓库https://github.com/mkubiophysics/B-LacFamPred获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/611f/9878453/0c3fa687d9e7/fmicb-13-1039687-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验