Suppr超能文献

深篮(DeepBL):一种基于深度学习的β-内酰胺酶计算机发现方法。

DeepBL: a deep learning-based approach for in silico discovery of beta-lactamases.

机构信息

Biomedicine Discovery Institute and the Department of Biochemistry and Molecular Biology at Monash University, Australia.

Bioinformatics from Monash University, Australia.

出版信息

Brief Bioinform. 2021 Jul 20;22(4). doi: 10.1093/bib/bbaa301.

Abstract

Beta-lactamases (BLs) are enzymes localized in the periplasmic space of bacterial pathogens, where they confer resistance to beta-lactam antibiotics. Experimental identification of BLs is costly yet crucial to understand beta-lactam resistance mechanisms. To address this issue, we present DeepBL, a deep learning-based approach by incorporating sequence-derived features to enable high-throughput prediction of BLs. Specifically, DeepBL is implemented based on the Small VGGNet architecture and the TensorFlow deep learning library. Furthermore, the performance of DeepBL models is investigated in relation to the sequence redundancy level and negative sample selection in the benchmark dataset. The models are trained on datasets of varying sequence redundancy thresholds, and the model performance is evaluated by extensive benchmarking tests. Using the optimized DeepBL model, we perform proteome-wide screening for all reviewed bacterium protein sequences available from the UniProt database. These results are freely accessible at the DeepBL webserver at http://deepbl.erc.monash.edu.au/.

摘要

β-内酰胺酶(BLs)是定位于细菌病原体周质空间的酶,使它们能够对抗β-内酰胺类抗生素。BLs 的实验鉴定虽然成本高昂,但对于理解β-内酰胺类抗生素耐药机制至关重要。为了解决这个问题,我们提出了 DeepBL,这是一种基于深度学习的方法,通过整合序列衍生特征,实现 BLs 的高通量预测。具体来说,DeepBL 是基于 Small VGGNet 架构和 TensorFlow 深度学习库实现的。此外,还研究了 DeepBL 模型在基准数据集的序列冗余水平和负样本选择方面的性能。模型在不同序列冗余度阈值的数据集上进行训练,并通过广泛的基准测试评估模型性能。使用优化后的 DeepBL 模型,我们对来自 UniProt 数据库的所有已审查细菌蛋白质序列进行了全蛋白质组筛选。这些结果可在 DeepBL 网络服务器 http://deepbl.erc.monash.edu.au/ 上免费获取。

相似文献

10
CBMAR: a comprehensive β-lactamase molecular annotation resource.CBMAR:一个全面的β-内酰胺酶分子注释资源。
Database (Oxford). 2014 Dec 3;2014:bau111. doi: 10.1093/database/bau111. Print 2014.

引用本文的文献

2
INTEDE 2.0: the metabolic roadmap of drugs.INTEDE 2.0:药物的代谢途径图。
Nucleic Acids Res. 2024 Jan 5;52(D1):D1355-D1364. doi: 10.1093/nar/gkad1013.

本文引用的文献

6
Past and Present Perspectives on β-Lactamases.β-内酰胺酶的过去与现在观点。
Antimicrob Agents Chemother. 2018 Sep 24;62(10). doi: 10.1128/AAC.01076-18. Print 2018 Oct.
7
HMMER web server: 2018 update.HMMER 网页服务器:2018 年更新。
Nucleic Acids Res. 2018 Jul 2;46(W1):W200-W204. doi: 10.1093/nar/gky448.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验