Suppr超能文献

每秒数千兆像素下对自由移动生物体进行并行计算3D视频显微镜观察。

Parallelized computational 3D video microscopy of freely moving organisms at multiple gigapixels per second.

作者信息

Zhou Kevin C, Harfouche Mark, Cooke Colin L, Park Jaehee, Konda Pavan C, Kreiss Lucas, Kim Kanghyun, Jönsson Joakim, Doman Jed, Reamey Paul, Saliu Veton, Cook Clare B, Zheng Maxwell, Bechtel Jack P, Bègue Aurélien, McCarroll Matthew, Bagwell Jennifer, Horstmeyer Gregor, Bagnat Michel, Horstmeyer Roarke

出版信息

ArXiv. 2023 Jan 19:arXiv:2301.08351v1.

Abstract

To study the behavior of freely moving model organisms such as zebrafish (Danio rerio) and fruit flies (Drosophila) across multiple spatial scales, it would be ideal to use a light microscope that can resolve 3D information over a wide field of view (FOV) at high speed and high spatial resolution. However, it is challenging to design an optical instrument to achieve all of these properties simultaneously. Existing techniques for large-FOV microscopic imaging and for 3D image measurement typically require many sequential image snapshots, thus compromising speed and throughput. Here, we present 3D-RAPID, a computational microscope based on a synchronized array of 54 cameras that can capture high-speed 3D topographic videos over a 135-cm^2 area, achieving up to 230 frames per second at throughputs exceeding 5 gigapixels (GPs) per second. 3D-RAPID features a 3D reconstruction algorithm that, for each synchronized temporal snapshot, simultaneously fuses all 54 images seamlessly into a globally-consistent composite that includes a coregistered 3D height map. The self-supervised 3D reconstruction algorithm itself trains a spatiotemporally-compressed convolutional neural network (CNN) that maps raw photometric images to 3D topography, using stereo overlap redundancy and ray-propagation physics as the only supervision mechanism. As a result, our end-to-end 3D reconstruction algorithm is robust to generalization errors and scales to arbitrarily long videos from arbitrarily sized camera arrays. The scalable hardware and software design of 3D-RAPID addresses a longstanding problem in the field of behavioral imaging, enabling parallelized 3D observation of large collections of freely moving organisms at high spatiotemporal throughputs, which we demonstrate in ants (Pogonomyrmex barbatus), fruit flies, and zebrafish larvae.

摘要

为了研究诸如斑马鱼(Danio rerio)和果蝇(Drosophila)等自由移动的模式生物在多个空间尺度上的行为,理想的做法是使用一台光学显微镜,它能够在大视野(FOV)范围内以高速和高空间分辨率解析三维信息。然而,设计一种能同时具备所有这些特性的光学仪器具有挑战性。现有的大视野显微成像技术和三维图像测量技术通常需要许多连续的图像快照,从而影响了速度和通量。在此,我们展示了3D-RAPID,这是一种基于54个相机同步阵列的计算显微镜,它能够在135平方厘米的区域内捕获高速三维地形视频,每秒吞吐量超过50亿像素(GPs)时帧率可达230帧/秒。3D-RAPID具有一种三维重建算法,对于每个同步的时间快照,该算法能将所有54幅图像无缝地同时融合成一个全局一致的合成图像,其中包括一个配准的三维高度图。这种自监督的三维重建算法本身训练一个时空压缩卷积神经网络(CNN),该网络将原始光度图像映射到三维地形,仅使用立体重叠冗余和光线传播物理作为唯一的监督机制。因此,我们的端到端三维重建算法对泛化误差具有鲁棒性,并且能够扩展到来自任意大小相机阵列的任意长视频。3D-RAPID可扩展的硬件和软件设计解决了行为成像领域的一个长期问题,能够以高时空通量对大量自由移动的生物体进行并行三维观察,我们在蚂蚁(Pogonomyrmex barbatus)、果蝇和斑马鱼幼虫身上进行了演示。

相似文献

7
Camera array based light field microscopy.基于相机阵列的光场显微镜。
Biomed Opt Express. 2015 Aug 3;6(9):3179-89. doi: 10.1364/BOE.6.003179. eCollection 2015 Sep 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验