Noro Yusuke, Li Ruixiang, Matsui Teppei, Jimura Koji
Department of Biosciences and Informatics, Keio University, Yokohama, Japan.
Department of Physiology, The University of Tokyo School of Medicine, Tokyo, Japan.
Front Neuroinform. 2023 Jan 12;16:960607. doi: 10.3389/fninf.2022.960607. eCollection 2022.
Resting-state (rs) fMRI has been widely used to examine brain-wide large-scale spatiotemporal architectures, known as resting-state networks (RSNs). Recent studies have focused on the temporally evolving characteristics of RSNs, but it is unclear what temporal characteristics are reflected in the networks. To address this issue, we devised a novel method for voxel-based visualization of spatiotemporal characteristics of rs-fMRI with a time scale of tens of seconds. We first extracted clusters of dominant activity-patterns using a region-of-interest approach and then used these temporal patterns of the clusters to obtain voxel-based activation patterns related to the clusters. We found that activation patterns related to the clusters temporally evolved with a characteristic temporal structure and showed mutual temporal alternations over minutes. The voxel-based representation allowed the decoding of activation patterns of the clusters in rs-fMRI using a meta-analysis of functional activations. The activation patterns of the clusters were correlated with behavioral measures. Taken together, our analysis highlights a novel approach to examine brain activity dynamics during rest.
静息态功能磁共振成像(rs-fMRI)已被广泛用于研究全脑范围内的大规模时空结构,即静息态网络(RSNs)。最近的研究集中在RSNs的时间演变特征上,但尚不清楚这些网络中反映了哪些时间特征。为了解决这个问题,我们设计了一种新颖的方法,用于在数十秒的时间尺度上对rs-fMRI的时空特征进行基于体素的可视化。我们首先使用感兴趣区域方法提取主要活动模式的簇,然后使用这些簇的时间模式来获得与簇相关的基于体素的激活模式。我们发现,与簇相关的激活模式随特征性的时间结构在时间上演变,并在数分钟内呈现相互的时间交替。基于体素的表示允许使用功能激活的荟萃分析来解码rs-fMRI中簇的激活模式。簇的激活模式与行为测量相关。综上所述,我们的分析突出了一种研究静息状态下大脑活动动态的新方法。