Suppr超能文献

静息和任务期间功能磁共振成像信号的无标度和多重分形时间动态

Scale-Free and Multifractal Time Dynamics of fMRI Signals during Rest and Task.

作者信息

Ciuciu P, Varoquaux G, Abry P, Sadaghiani S, Kleinschmidt A

机构信息

Life Science Division, Biomedical Imaging Department, NeuroSpin Center, Commissariat à l'Energie Atomique et aux Energies Alternatives Gif-sur-Yvette, France.

出版信息

Front Physiol. 2012 Jun 15;3:186. doi: 10.3389/fphys.2012.00186. eCollection 2012.

Abstract

Scaling temporal dynamics in functional MRI (fMRI) signals have been evidenced for a decade as intrinsic characteristics of ongoing brain activity (Zarahn et al., 1997). Recently, scaling properties were shown to fluctuate across brain networks and to be modulated between rest and task (He, 2011): notably, Hurst exponent, quantifying long memory, decreases under task in activating and deactivating brain regions. In most cases, such results were obtained: First, from univariate (voxelwise or regionwise) analysis, hence focusing on specific cognitive systems such as Resting-State Networks (RSNs) and raising the issue of the specificity of this scale-free dynamics modulation in RSNs. Second, using analysis tools designed to measure a single scaling exponent related to the second order statistics of the data, thus relying on models that either implicitly or explicitly assume Gaussianity and (asymptotic) self-similarity, while fMRI signals may significantly depart from those either of those two assumptions (Ciuciu et al., 2008; Wink et al., 2008). To address these issues, the present contribution elaborates on the analysis of the scaling properties of fMRI temporal dynamics by proposing two significant variations. First, scaling properties are technically investigated using the recently introduced Wavelet Leader-based Multifractal formalism (WLMF; Wendt et al., 2007). This measures a collection of scaling exponents, thus enables a richer and more versatile description of scale invariance (beyond correlation and Gaussianity), referred to as multifractality. Also, it benefits from improved estimation performance compared to tools previously used in the literature. Second, scaling properties are investigated in both RSN and non-RSN structures (e.g., artifacts), at a broader spatial scale than the voxel one, using a multivariate approach, namely the Multi-Subject Dictionary Learning (MSDL) algorithm (Varoquaux et al., 2011) that produces a set of spatial components that appear more sparse than their Independent Component Analysis (ICA) counterpart. These tools are combined and applied to a fMRI dataset comprising 12 subjects with resting-state and activation runs (Sadaghiani et al., 2009). Results stemming from those analysis confirm the already reported task-related decrease of long memory in functional networks, but also show that it occurs in artifacts, thus making this feature not specific to functional networks. Further, results indicate that most fMRI signals appear multifractal at rest except in non-cortical regions. Task-related modulation of multifractality appears only significant in functional networks and thus can be considered as the key property disentangling functional networks from artifacts. These finding are discussed in the light of the recent literature reporting scaling dynamics of EEG microstate sequences at rest and addressing non-stationarity issues in temporally independent fMRI modes.

摘要

功能磁共振成像(fMRI)信号中的时间动态标度已被证实是持续脑活动的内在特征,这一发现已有十年之久(扎拉恩等人,1997年)。最近,研究表明标度特性在不同脑网络间波动,并在静息和任务状态之间受到调制(何,2011年):值得注意的是,量化长程记忆的赫斯特指数在任务状态下,在激活和失活的脑区中会降低。在大多数情况下,这些结果是通过以下方式获得的:首先,从单变量(体素或区域层面)分析中得出,因此聚焦于特定的认知系统,如静息态网络(RSNs),并引发了RSNs中这种无标度动态调制特异性的问题。其次,使用旨在测量与数据二阶统计相关的单个标度指数的分析工具,因此依赖于隐含或明确假设高斯性和(渐近)自相似性的模型,而fMRI信号可能显著偏离这两个假设中的任何一个(丘西乌等人,2008年;温克等人,2008年)。为了解决这些问题,本研究通过提出两个显著变化,详细阐述了对fMRI时间动态标度特性的分析。首先,使用最近引入的基于小波领导者的多重分形形式主义(WLMF;温特等人,2007年)从技术上研究标度特性。这测量了一组标度指数,从而能够对标度不变性进行更丰富、更通用的描述(超越相关性和高斯性),即多重分形。此外,与文献中先前使用的工具相比,它具有更好的估计性能。其次,使用多变量方法,即多主体字典学习(MSDL)算法(瓦罗夸等人,2011年),在比体素层面更广泛的空间尺度上,对RSN和非RSN结构(如伪迹)中的标度特性进行研究,该算法产生一组空间成分,这些成分比其独立成分分析(ICA)对应物显得更稀疏。将这些工具结合起来,并应用于一个包含12名受试者的fMRI数据集,该数据集包括静息态和激活状态的扫描(萨达贾尼等人,2009年)。这些分析得出的结果证实了已报道的功能网络中与任务相关的长程记忆下降,但也表明这种现象在伪迹中也会出现,因此这一特征并非功能网络所特有。此外,结果表明,除了非皮质区域外,大多数fMRI信号在静息状态下呈现多重分形。与任务相关的多重分形调制仅在功能网络中显著,因此可被视为区分功能网络和伪迹的关键特性。结合最近报道的静息态脑电图微状态序列的标度动态以及解决时间上独立fMRI模式中的非平稳性问题的文献,对这些发现进行了讨论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f567/3375626/21f2b225ec73/fphys-03-00186-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验