Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China.
Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan, Republic of China.
Elife. 2019 Jul 18;8:e47372. doi: 10.7554/eLife.47372.
Overproduction of reactive oxygen species (ROS) is known to mediate glutamate excitotoxicity in neurological diseases. However, how ROS burdens can influence neural circuit integrity remains unclear. Here, we investigate the impact of excitotoxicity induced by depletion of Eaat1, an astrocytic glutamate transporter, on locomotor central pattern generator (CPG) activity, neuromuscular junction architecture, and motor function. We show that glutamate excitotoxicity triggers a circuit-dependent ROS feedback loop to sculpt the motor system. Excitotoxicity initially elevates ROS, thereby inactivating cholinergic interneurons and consequently changing CPG output activity to overexcite motor neurons and muscles. Remarkably, tonic motor neuron stimulation boosts muscular ROS, gradually dampening muscle contractility to feedback-enhance ROS accumulation in the CPG circuit and subsequently exacerbate circuit dysfunction. Ultimately, excess premotor excitation of motor neurons promotes ROS-activated stress signaling that alters neuromuscular junction architecture. Collectively, our results reveal that excitotoxicity-induced ROS can perturb motor system integrity through a circuit-dependent mechanism.
活性氧(ROS)的过度产生被认为介导了神经疾病中的谷氨酸兴奋性毒性。然而,ROS 负担如何影响神经回路的完整性尚不清楚。在这里,我们研究了耗竭谷氨酸转运体 Eaat1 诱导的兴奋毒性对运动中枢模式发生器(CPG)活动、神经肌肉接头结构和运动功能的影响。我们表明,谷氨酸兴奋性毒性引发了一种依赖于回路的 ROS 反馈回路,来塑造运动系统。兴奋毒性最初会升高 ROS,从而使胆碱能中间神经元失活,进而改变 CPG 输出活动,过度兴奋运动神经元和肌肉。值得注意的是,持续的运动神经元刺激会增加肌肉中的 ROS,逐渐抑制肌肉收缩,从而反馈增强 CPG 回路中的 ROS 积累,并随后加剧回路功能障碍。最终,运动神经元的过度预运动兴奋促进了 ROS 激活的应激信号,改变了神经肌肉接头的结构。总的来说,我们的结果表明,兴奋毒性诱导的 ROS 可以通过依赖于回路的机制破坏运动系统的完整性。