Overmars L Malin, van Es Bram, Groepenhoff Floor, De Groot Mark C H, Pasterkamp Gerard, den Ruijter Hester M, van Solinge Wouter W, Hoefer Imo E, Haitjema Saskia
Central Diagnostic Laboratory, University Medical Center Utrecht, Utrecht, Heidelberglaan 100 3584 CX, the Netherlands.
Laboratory of Experimental Cardiology, University Medical Center Utrecht, Heidelberglaan 100 3584 CX, Utrecht, the Netherlands.
Eur Heart J Digit Health. 2021 Dec 7;3(1):11-19. doi: 10.1093/ehjdh/ztab103. eCollection 2022 Mar.
With the ageing European population, the incidence of coronary artery disease (CAD) is expected to rise. This will likely result in an increased imaging use. Symptom recognition can be complicated, as symptoms caused by CAD can be atypical, particularly in women. Early CAD exclusion may help to optimize use of diagnostic resources and thus improve the sustainability of the healthcare system. To develop sex-stratified algorithms, trained on routinely available electronic health records (EHRs), raw electrocardiograms, and haematology data to exclude CAD in patients upfront.
We trained XGBoost algorithms on data from patients from the Utrecht Patient-Oriented Database, who underwent coronary computed tomography angiography (CCTA), and/or stress cardiac magnetic resonance (CMR) imaging, or stress single-photon emission computerized tomography (SPECT) in the UMC Utrecht. Outcomes were extracted from radiology reports. We aimed to maximize negative predictive value (NPV) to minimize the false negative risk with acceptable specificity. Of 6808 CCTA patients (31% female), 1029 females (48%) and 1908 males (45%) had no diagnosis of CAD. Of 3053 CMR/SPECT patients (45% female), 650 females (47%) and 881 males (48%) had no diagnosis of CAD. On the train and test set, the CCTA models achieved NPVs and specificities of 0.95 and 0.19 (females) and 0.96 and 0.09 (males). The CMR/SPECT models achieved NPVs and specificities of 0.75 and 0.041 (females) and 0.92 and 0.026 (males).
Coronary artery disease can be excluded from EHRs with high NPV. Our study demonstrates new possibilities to reduce unnecessary imaging in women and men suspected of CAD.
随着欧洲人口老龄化,冠状动脉疾病(CAD)的发病率预计将会上升。这可能会导致成像检查的使用增加。症状识别可能会很复杂,因为CAD引起的症状可能不典型,尤其是在女性中。早期排除CAD可能有助于优化诊断资源的使用,从而提高医疗保健系统的可持续性。开发基于常规可用的电子健康记录(EHR)、原始心电图和血液学数据进行训练的性别分层算法,以便在患者中预先排除CAD。
我们使用来自乌得勒支患者导向数据库的患者数据训练XGBoost算法,这些患者在乌得勒支大学医学中心接受了冠状动脉计算机断层扫描血管造影(CCTA)和/或应力心脏磁共振(CMR)成像,或应力单光子发射计算机断层扫描(SPECT)。结果从放射学报告中提取。我们旨在最大化阴性预测值(NPV),以在可接受的特异性下将假阴性风险降至最低。在6808例CCTA患者中(31%为女性),1029名女性(48%)和1908名男性(45%)未被诊断为CAD。在3053例CMR/SPECT患者中(45%为女性),650名女性(47%)和881名男性(48%)未被诊断为CAD。在训练集和测试集上,CCTA模型的NPV和特异性分别为0.95和0.19(女性)以及0.96和0.09(男性)。CMR/SPECT模型的NPV和特异性分别为0.75和0.041(女性)以及0.92和0.026(男性)。
可以从EHR中以高NPV排除冠状动脉疾病。我们的研究展示了减少疑似CAD的女性和男性不必要成像检查的新可能性。