Suppr超能文献

利用机器学习优化冠状动脉成像决策:一项外部验证研究。

Optimising coronary imaging decisions with machine learning: an external validation study.

作者信息

Overmars L Malin, van Es Bram, Groepenhoff Floor, De Groot Mark C H, Somsen G Aernout, Bots Sophie Heleen, Tulevski I Igor, Hofstra Leonard, den Ruijter Hester M, van Solinge Wouter W, Hoefer Imo, Haitjema Saskia

机构信息

Central Diagnostic Laboratory, University Medical Centre Utrecht, Utrecht, The Netherlands

Central Diagnostic Laboratory, University Medical Centre Utrecht, Utrecht, The Netherlands.

出版信息

Open Heart. 2025 Apr 24;12(1):e003072. doi: 10.1136/openhrt-2024-003072.

Abstract

BACKGROUND

Exclusion of coronary stenosis in individuals with suggestive symptoms is challenging. Cardiac CT or coronary angiography is often used but is inefficient and costly and involves risks. Sex-stratified algorithms based on electronic health records (EHRs) could be a non-invasive alternative for excluding coronary stenosis, yet their performance may vary by healthcare settings. Thus, external validation is crucial for determining their generalisability. This study aimed to externally validate sex-stratified machine learning algorithms based on EHR data to predict the absence of coronary stenosis, evaluated in diverse clinical settings.

METHODS

Sex-stratified XGBoost algorithms were trained on EHR data from patients who underwent coronary imaging at the University Medical Center Utrecht (n=14 674) and externally tested on EHR data of 13 Cardiology centres in the Netherlands (n=9252). The outcome was defined as the absence of coronary stenosis, identified through text mining of radiology report conclusions, and predictive performance was assessed by negative predictive values (NPVs) and specificities.

RESULTS

On the training cohort (9298 men (median age 55 years, 73% no coronary stenosis) and 5376 women (median age 59 years, 83% no coronary stenosis)), the algorithms showed NPVs and specificities of 0.95 and 0.14 in men and 0.93 and 0.26 in women, respectively. On the testing cohort (4762 men (median age 60 years, 60% no coronary stenosis) and 4490 women (median age 60 years, 83% no coronary stenosis)), the algorithm showed NPVs and specificities of 0.89 and 0.07 in men and 0.87 and 0.18 in women, respectively.

CONCLUSIONS

This study externally validates sex-stratified machine learning algorithms using EHR data to non-invasively predict the absence of coronary stenosis, with high NPVs observed across settings. However, given the modest specificity and study limitations, these findings should be considered preliminary, warranting further refinement before clinical adoption.

摘要

背景

排除有提示性症状个体的冠状动脉狭窄具有挑战性。心脏CT或冠状动脉造影术虽常被使用,但效率低下、成本高昂且存在风险。基于电子健康记录(EHR)的性别分层算法可能是排除冠状动脉狭窄的一种非侵入性替代方法,但其性能可能因医疗环境而异。因此,外部验证对于确定其通用性至关重要。本研究旨在对基于EHR数据的性别分层机器学习算法进行外部验证,以预测无冠状动脉狭窄情况,并在不同临床环境中进行评估。

方法

性别分层的XGBoost算法在乌得勒支大学医学中心接受冠状动脉成像的患者的EHR数据上进行训练(n = 14674),并在荷兰13个心脏病中心的EHR数据上进行外部测试(n = 9252)。结局定义为无冠状动脉狭窄,通过对放射学报告结论进行文本挖掘来确定,预测性能通过阴性预测值(NPV)和特异性进行评估。

结果

在训练队列中(9298名男性(中位年龄55岁,73%无冠状动脉狭窄)和5376名女性(中位年龄59岁,83%无冠状动脉狭窄)),算法在男性中的NPV和特异性分别为0.95和0.14,在女性中分别为0.93和0.26。在测试队列中(4762名男性(中位年龄60岁,60%无冠状动脉狭窄)和4490名女性(中位年龄60岁,83%无冠状动脉狭窄)),算法在男性中的NPV和特异性分别为0.89和0.07,在女性中分别为0.87和0.18。

结论

本研究对使用EHR数据的性别分层机器学习算法进行了外部验证,以非侵入性地预测无冠状动脉狭窄情况,在各环境中均观察到较高的NPV。然而,鉴于特异性一般且存在研究局限性,这些发现应被视为初步结果,在临床应用前需进一步完善。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5b5/12035450/30b1561e0416/openhrt-12-1-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验