Joshi Payal B
Operations and Method Development, Shefali Research Laboratories, Ambernath (East), Thane, Maharashtra 421501 India.
Artif Intell Rev. 2023 Jan 24:1-26. doi: 10.1007/s10462-023-10391-w.
Chemometrics and machine learning are artificial intelligence-based methods stirring a transformative change in chemistry. Organic synthesis, drug discovery and analytical techniques are incorporating machine learning techniques at an accelerated pace. However, machine-assisted chemistry faces challenges while solving critical problems in chemistry due to complex relationships in data sets. Even with increasing publishing volumes on machine learning, its application in areas of chemistry is not a straightforward endeavour. A particular concern in applying machine learning in chemistry is data availability and reproducibility. The present review article discusses the various chemometric methods, expert systems, and machine learning techniques developed for solving problems of organic synthesis and drug discovery with selected examples. Further, a concise discussion on chemometrics and ML deployed in analytical techniques such as, spectroscopy, microscopy and chromatography are presented. Finally, the review reflects the challenges, opportunities and future perspectives on machine learning and automation in chemistry. The review concludes by pondering on some tough questions on applying machine learning and their possibility of navigation in the different terrains of chemistry.
化学计量学和机器学习是基于人工智能的方法,正在引发化学领域的变革性变化。有机合成、药物发现和分析技术正在加速融入机器学习技术。然而,由于数据集中存在复杂的关系,机器辅助化学在解决化学中的关键问题时面临挑战。尽管关于机器学习的出版物数量不断增加,但其在化学领域的应用并非易事。在化学中应用机器学习时,一个特别令人关注的问题是数据的可用性和可重复性。本文综述讨论了为解决有机合成和药物发现问题而开发的各种化学计量方法、专家系统和机器学习技术,并给出了实例。此外,还简要讨论了化学计量学和机器学习在光谱学、显微镜学和色谱学等分析技术中的应用。最后,该综述反映了机器学习和化学自动化面临的挑战、机遇和未来展望。综述最后思考了一些关于应用机器学习的棘手问题以及在化学的不同领域中应对这些问题的可能性。