Suppr超能文献

人工智能在产前诊断中的应用:基于梯度提升机器学习算法的唐氏综合征风险评估

Artificial intelligence in prenatal diagnosis: Down syndrome risk assessment with the power of gradient boosting-based machine learning algorithms.

作者信息

Yalçın Emre, Koç Tarık Kaan, Aslan Serpil, Demir Süleyman Cansun, Evrüke İsmail Cüneyt, Sucu Mete, Avan Mesut, İşlek Uzay Fatma

机构信息

Çukurova University Faculty of Medicine, Department of Obstetrics and Gynecology, Division of Perinatology, Adana, Türkiye.

Malatya Turgut Özal University Faculty of Engineering and Natural Sciences, Department of Software Engineering, Malatya, Türkiye.

出版信息

Turk J Obstet Gynecol. 2025 Jun 4;22(2):121-128. doi: 10.4274/tjod.galenos.2025.83278.

Abstract

OBJECTIVE

One of the most common chromosomal abnormalities seen during pregnancy is Down syndrome (Trisomy 21). To determine the risk of Down syndrome, first-trimester combined screening tests are essential. Using data from the first-trimester screening test, this study compares machine learning and deep learning models to forecast the risk of Down syndrome.

MATERIALS AND METHODS

Within the scope of the study, biochemical and biophysical data of 959 pregnant women who underwent first-trimester screening tests at Çukurova University Obstetrics and Gynecology Clinic between 2020-2024 were analyzed. After cleaning missing and erroneous data, various preprocessing and normalization techniques were applied to the final dataset consisting of 853 observations. Down syndrome risk prediction was performed using different machine learning models, and model performances were compared based on accuracy rates and other evaluation metrics.

RESULTS

Experimental results show that the CatBoost model provides the highest success rate, with an accuracy rate of 95.31%. In addition, the XGBoost and LightGBM models exhibited high performance, with accuracy rates of 95.19% and 94.84%, respectively. The study also examines the effects of the class imbalance problem on model performance in detail and evaluates various strategies to reduce this imbalance.

CONCLUSION

The findings show that gradient boosting-based machine learning models have significant potential in Down syndrome risk prediction. This approach is expected to contribute to the reduction of unnecessary invasive tests and improve clinical decision-making processes by increasing the accuracy rate in prenatal screening processes. Future studies should aim to increase the generalization capacity of the model on larger data sets and to provide integration with different machine learning algorithms.

摘要

目的

孕期最常见的染色体异常之一是唐氏综合征(21三体综合征)。为了确定唐氏综合征的风险,孕早期联合筛查测试至关重要。本研究利用孕早期筛查测试的数据,比较机器学习和深度学习模型来预测唐氏综合征的风险。

材料与方法

在该研究范围内,分析了2020年至2024年间在库库洛瓦大学妇产科诊所接受孕早期筛查测试的959名孕妇的生化和生物物理数据。在清理缺失和错误数据后,对由853条观测值组成的最终数据集应用了各种预处理和归一化技术。使用不同的机器学习模型进行唐氏综合征风险预测,并根据准确率和其他评估指标比较模型性能。

结果

实验结果表明,CatBoost模型的成功率最高,准确率为95.31%。此外,XGBoost和LightGBM模型也表现出高性能,准确率分别为95.19%和94.84%。该研究还详细考察了类别不平衡问题对模型性能的影响,并评估了减少这种不平衡的各种策略。

结论

研究结果表明,基于梯度提升的机器学习模型在唐氏综合征风险预测方面具有巨大潜力。这种方法有望通过提高产前筛查过程中的准确率,减少不必要的侵入性检查,并改善临床决策过程。未来的研究应致力于提高模型在更大数据集上的泛化能力,并实现与不同机器学习算法的集成。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6809/12136125/07b5a0040dbe/TurkJObstetGynecol-22-2-121-figure-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验