Suppr超能文献

芬兰糖尿病风险评分和澳大利亚糖尿病风险评估工具预测模型用于识别未诊断2型糖尿病患者的外部验证:伊朗的一项横断面研究

External Validation of Finnish Diabetes Risk Score and Australian Diabetes Risk Assessment Tool Prediction Models to Identify People with Undiagnosed Type 2 Diabetes: A Cross-sectional Study in Iran.

作者信息

Mahmoodzadeh Saeedeh, Jahani Younes, Najafipour Hamid, Sanjari Mojgan, Shadkam-Farokhi Mitra, Shahesmaeili Armita

机构信息

School of Public Health, Kerman University of Medical Sciences, Kerman, Iran.

Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.

出版信息

Int J Endocrinol Metab. 2022 Oct 31;20(4):e127114. doi: 10.5812/ijem-127114. eCollection 2022 Oct.

Abstract

BACKGROUND

Noninvasive risk prediction models have been widely used in various settings to identify individuals with undiagnosed diabetes.

OBJECTIVES

We aimed to evaluate the discrimination, calibration, and clinical usefulness of the Finnish Diabetes Risk Score (FINDRISC) and Australian Diabetes Risk Assessment (AUSDRISK) to screen undiagnosed diabetes in Kerman, Iran.

METHODS

We analyzed data from 2014 to 2018 in the second round of the Kerman Coronary Artery Disease Risk Factors Study (KERCADRS), Iran. Participants aged 35 - 65 with no history of confirmed diabetes were eligible. The area under the receiver operating characteristic curve (AUROC) and decision curve analysis were applied to evaluate the discrimination power and clinical usefulness of the models, respectively. The calibration was assessed by the Hosmer-Lemeshow test and the calibration plots.

RESULTS

Out of 3262 participants, 145 (4.44%) had undiagnosed diabetes. The estimated AUROCs were 0.67 and 0.62 for the AUSDRISK and FINDRISC models, respectively (P < 0.001). The chi-square test results for FINDRISC and AUSDRISC were 7.90 and 16.47 for the original model and 3.69 and 14.61 for the recalibrated model, respectively. Based on the decision curves, useful threshold ranges for the original models of FINDRIS and AUSDRISK were 4% to 10% and 3% to 13%, respectively. Useful thresholds for the recalibrated models of FINDRISC and AUSDRISK were 4% to 8% and 4% to 9%, respectively.

CONCLUSIONS

The original AUSDRISK model performs better than FINDRISC in identifying patients with undiagnosed diabetes and could be used as a simple and noninvasive tool where access to laboratory facilities is costly or limited.

摘要

背景

非侵入性风险预测模型已在各种环境中广泛用于识别未确诊糖尿病的个体。

目的

我们旨在评估芬兰糖尿病风险评分(FINDRISC)和澳大利亚糖尿病风险评估(AUSDRISK)在伊朗克尔曼筛查未确诊糖尿病的辨别力、校准度和临床实用性。

方法

我们分析了伊朗克尔曼冠状动脉疾病风险因素研究(KERCADRS)第二轮2014年至2018年的数据。年龄在35 - 65岁且无确诊糖尿病史的参与者符合条件。应用受试者操作特征曲线下面积(AUROC)和决策曲线分析分别评估模型的辨别力和临床实用性。通过Hosmer-Lemeshow检验和校准图评估校准度。

结果

在3262名参与者中,145名(4.44%)患有未确诊糖尿病。AUSDRISK和FINDRISC模型的估计AUROC分别为0.67和0.62(P < 0.001)。FINDRISC和AUSDRISK的卡方检验结果,原始模型分别为7.90和16.47,重新校准模型分别为3.69和14.61。基于决策曲线,FINDRIS和AUSDRISK原始模型的有用阈值范围分别为4%至10%和3%至13%。FINDRISC和AUSDRISK重新校准模型的有用阈值分别为4%至8%和4%至9%。

结论

原始的AUSDRISK模型在识别未确诊糖尿病患者方面比FINDRISC表现更好,并且在获取实验室设施成本高昂或有限的情况下,可以用作简单的非侵入性工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c5f/9871969/aa040d5c3385/ijem-20-4-127114-i001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验