Suppr超能文献

球形模糊环境下COVID-19信息疫情管理策略评估的决策框架

A decision-making framework for COVID-19 infodemic management strategies evaluation in spherical fuzzy environment.

作者信息

Jafarzadeh Ghoushchi Saeid, Bonab Shabnam Rahnamay, Ghiaci Ali Memarpour

机构信息

Faculty of Industrial Engineering, Urmia University of Technology, Urmia, Iran.

出版信息

Stoch Environ Res Risk Assess. 2023;37(4):1635-1648. doi: 10.1007/s00477-022-02355-3. Epub 2023 Jan 20.

Abstract

100 years after the Spanish flu, the COVID-19 crisis showed that large-scale epidemics and pandemics do not belong to the past. On the report of the World Health Organization, COVID-19 is the most significant public health problem of the twenty-first century. Like previous epidemics, the current crisis is accompanied by uncertainty, mistrust, doubt and fear, and this has led to an infodemic connection to the epidemic. So not only are we fighting an epidemic, but also, we are brawling an infodemic. To reduce the social and economic consequences and harmful effects of infodemic health, and to overcome it, we need to implement strategies against infodemic. Evaluating strategies based on multiple characteristics can be considered multi-criteria decision-making (MCDM) problem. According to the literature, there is no study that aims on proposing an integrated approach to evaluate infodemic management strategies under uncertain environment. Therefore, in this paper, an integrated framework based on the extended version of best-worst method (BWM) and Combined Compromise Solution (CoCoSo) methods under a spherical fuzzy set (SFS) is developed for the first time to address the COVID-19 infodemic management strategies selection. Initially, the criteria are weighted using the developed SFS BWM which reduces uncertainty in pairwise comparisons. In the next step, the 15 selected strategies are analyzed and ranked using SFS CoCoSo. The outputs of this paper illustrate that online tools for fact checking COVID-19 information and engage and empower communities are placed in the first and second priorities, respectively. The comparison of ranking results SFS-CoCoSo with other MCDM methods demonstrates the performance of the proposed approach and its ranking stability.

摘要

西班牙大流感爆发100年后,新冠疫情危机表明,大规模流行病并非属于过去。根据世界卫生组织的报告,新冠疫情是21世纪最重大的公共卫生问题。与以往的流行病一样,当前的危机伴随着不确定性、不信任、怀疑和恐惧,这导致了与疫情相关的信息疫情。因此,我们不仅在与疫情作斗争,而且还在与信息疫情作斗争。为了减少信息疫情对健康造成的社会和经济后果及有害影响,并战胜它,我们需要实施应对信息疫情的策略。基于多个特征评估策略可被视为多准则决策(MCDM)问题。据文献记载,尚无研究旨在提出一种综合方法来评估不确定环境下的信息疫情管理策略。因此,本文首次提出了一种基于扩展的最佳-最差方法(BWM)和球形模糊集(SFS)下的组合折衷解(CoCoSo)方法的综合框架,以解决新冠疫情信息疫情管理策略的选择问题。首先,使用所提出的SFS BWM对准则进行加权,这减少了成对比较中的不确定性。在下一步中,使用SFS CoCoSo对15种选定的策略进行分析和排序。本文的结果表明,用于核实新冠疫情信息的在线工具以及让社区参与并赋予其权力的工具分别被列为第一和第二优先事项。将SFS-CoCoSo的排序结果与其他MCDM方法进行比较,证明了所提方法的性能及其排序稳定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee2a/9857902/b75e9509bf8f/477_2022_2355_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验