Suppr超能文献

基于球形模糊集的多准则决策最佳-最差方法扩展

An extension of the best-worst method based on the spherical fuzzy sets for multi-criteria decision-making.

作者信息

Haseli Gholamreza, Sheikh Reza, Ghoushchi Saeid Jafarzadeh, Hajiaghaei-Keshteli Mostafa, Moslem Sarbast, Deveci Muhammet, Kadry Seifedine

机构信息

Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico.

School of Architecture Planning and Environmental Policy, University College Dublin, Belfield, Dublin, D04 V1W8 Ireland.

出版信息

Granul Comput. 2024;9(2):40. doi: 10.1007/s41066-024-00462-w. Epub 2024 Mar 30.

Abstract

The ambiguous information in multi-criteria decision-making (MCDM) and the vagueness of decision-makers for qualitative judgments necessitate accurate tools to overcome uncertainties and generate reliable solutions. As one of the latest and most powerful MCDM methods for obtaining criteria weight, the best-worst method (BWM) has been developed. Compared to other MCDM methods, such as the analytic hierarchy process, the BWM requires fewer pairwise comparisons and produces more consistent results. Consequently, the main objective of this study is to develop an extension of BWM using spherical fuzzy sets (SFS) to address MCDM problems under uncertain conditions. Hesitancy, non-membership, and membership degrees are three-dimensional functions included in the SFS. The presence of three defined degrees allows decision-makers to express their judgments more accurately. An optimization model based on nonlinear constraints is used to determine optimal spherical fuzzy weight coefficients (SF-BWM). Additionally, a consistency ratio is proposed for the SF-BWM to assess the reliability of the proposed method in comparison to other versions of BWM. SF-BWM is examined using two numerical decision-making problems. The results show that the proposed method based on the SF-BWM provided the criteria weights with the same priority as the BWM and fuzzy BWM. However, there are differences in the criteria weight values based on the SF-BWM that indicate the accuracy and reliability of the obtained results. The main advantage of using SF-BWM is providing a better consistency ratio. Based on the comparative analysis, the consistency ratio obtained for SF-BWM is threefold better than the BWM and fuzzy BWM methods, which leads to more accurate results than BWM and fuzzy BWM.

摘要

多准则决策(MCDM)中信息的模糊性以及决策者定性判断的模糊性,需要精确的工具来克服不确定性并生成可靠的解决方案。作为获取准则权重的最新且最强大的MCDM方法之一,最佳-最差方法(BWM)已被开发出来。与其他MCDM方法(如层次分析法)相比,BWM需要更少的成对比较,并且产生的结果更具一致性。因此,本研究的主要目标是开发一种使用球面模糊集(SFS)的BWM扩展方法,以解决不确定条件下的MCDM问题。犹豫度、非隶属度和隶属度是SFS中包含的三维函数。三个定义度的存在使决策者能够更准确地表达他们的判断。基于非线性约束的优化模型用于确定最优球面模糊权重系数(SF-BWM)。此外,还为SF-BWM提出了一致性比率,以评估该方法与其他版本的BWM相比的可靠性。使用两个数值决策问题对SF-BWM进行了检验。结果表明,基于SF-BWM提出的方法提供的准则权重与BWM和模糊BWM具有相同的优先级。然而,基于SF-BWM的准则权重值存在差异,这表明了所得结果的准确性和可靠性。使用SF-BWM的主要优点是提供了更好的一致性比率。基于比较分析,SF-BWM获得的一致性比率比BWM和模糊BWM方法高三倍,这导致比BWM和模糊BWM更准确的结果。

相似文献

1
An extension of the best-worst method based on the spherical fuzzy sets for multi-criteria decision-making.
Granul Comput. 2024;9(2):40. doi: 10.1007/s41066-024-00462-w. Epub 2024 Mar 30.
2
Application of improved fuzzy best worst analytic hierarchy process on renewable energy.
PeerJ Comput Sci. 2021 Apr 13;7:e453. doi: 10.7717/peerj-cs.453. eCollection 2021.
3
COVID-19 safe campus evaluation for universities by a hybrid interval type-2 fuzzy decision-making model.
Environ Sci Pollut Res Int. 2023 Jan;30(3):8133-8153. doi: 10.1007/s11356-022-22796-1. Epub 2022 Sep 2.
4
A novel multi-criteria decision-making framework for selecting municipal solid waste management alternative with 2-dimensional uncertain linguistic sets.
Environ Sci Pollut Res Int. 2022 Sep;29(45):68582-68599. doi: 10.1007/s11356-022-20494-6. Epub 2022 May 11.
5
An efficiency-based interval type-2 fuzzy multi-criteria group decision making for makeshift hospital selection.
Appl Soft Comput. 2022 Jan;115:108243. doi: 10.1016/j.asoc.2021.108243. Epub 2021 Dec 4.
6
A decision-making framework for COVID-19 infodemic management strategies evaluation in spherical fuzzy environment.
Stoch Environ Res Risk Assess. 2023;37(4):1635-1648. doi: 10.1007/s00477-022-02355-3. Epub 2023 Jan 20.
7
Multiple criteria decision analytic methods in management with T-spherical fuzzy information.
Artif Intell Rev. 2023 Apr 29:1-71. doi: 10.1007/s10462-023-10461-z.
8
Green supplier selection for textile industry: a case study using BWM-TODIM integration under interval type-2 fuzzy sets.
Environ Sci Pollut Res Int. 2021 Dec;28(45):64793-64817. doi: 10.1007/s11356-021-13832-7. Epub 2021 Jul 27.
9
Einstein exponential operation laws of spherical fuzzy sets and aggregation operators in decision making.
Multimed Tools Appl. 2023 Apr 12:1-24. doi: 10.1007/s11042-023-14532-9.

引用本文的文献

1
Empowering decentralized identity systems for Web 3.0 in complex spherical fuzzy knowledge.
Sci Rep. 2024 Oct 9;14(1):23590. doi: 10.1038/s41598-024-73488-4.

本文引用的文献

1
An integrated interval-valued intuitionistic fuzzy technique for resumption risk assessment amid COVID-19 prevention.
Inf Sci (N Y). 2023 Jan;619:695-721. doi: 10.1016/j.ins.2022.11.028. Epub 2022 Nov 15.
2
Recovery solutions for ecotourism centers during the Covid-19 pandemic: Utilizing Fuzzy DEMATEL and Fuzzy VIKOR methods.
Expert Syst Appl. 2021 Dec 15;185:115594. doi: 10.1016/j.eswa.2021.115594. Epub 2021 Jul 17.
3
Sustainable collection center location selection in emerging economy for electronic waste with fuzzy Best-Worst and fuzzy TOPSIS.
Waste Manag. 2021 May 15;127:37-47. doi: 10.1016/j.wasman.2021.03.054. Epub 2021 Apr 27.
4
Sustainable waste disposal technology selection: The stratified best-worst multi-criteria decision-making method.
Waste Manag. 2021 Mar 1;122:100-112. doi: 10.1016/j.wasman.2020.12.040. Epub 2021 Jan 25.
6
A new emergency response of spherical intelligent fuzzy decision process to diagnose of COVID19.
Soft comput. 2023;27(3):1809-1825. doi: 10.1007/s00500-020-05287-8. Epub 2020 Oct 1.
7
Novel similarity measures in spherical fuzzy environment and their applications.
Eng Appl Artif Intell. 2020 Sep;94:103837. doi: 10.1016/j.engappai.2020.103837. Epub 2020 Jul 28.
8
Fuzzy forecasting based on fuzzy-trend logical relationship groups.
IEEE Trans Syst Man Cybern B Cybern. 2010 Oct;40(5):1343-58. doi: 10.1109/TSMCB.2009.2038358. Epub 2010 Jan 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验