Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada.
Harvard Medical School, Harvard University, Boston, Massachusetts, USA.
Hum Brain Mapp. 2023 Apr 15;44(6):2345-2364. doi: 10.1002/hbm.26214. Epub 2023 Jan 30.
High-altitude indoctrination (HAI) trains individuals to recognize symptoms of hypoxia by simulating high-altitude conditions using normobaric (NH) or hypobaric (HH) hypoxia. Previous studies suggest that despite equivalent inspired oxygen levels, physiological differences could exist between these conditions. In particular, differences in neurophysiological responses to these conditions are not clear. Our study aimed to investigate correlations between oxygen saturation (SpO ) and neural responses in NH and HH. We recorded 5-min of resting-state eyes-open electroencephalogram (EEG) and SpO during control, NH, and HH conditions from 13 participants. We applied a multivariate framework to characterize correlations between SpO and EEG measures (spectral power and multiscale entropy [MSE]), within each participant and at the group level. Participants were desaturating during the first 150 s of NH versus steadily desaturated in HH. We considered the entire time interval, first and second half intervals, separately. All the conditions were characterized by statistically significant participant-specific patterns of EEG-SpO correlations. However, at the group level, the desaturation period expressed a robust pattern of these correlations across frequencies and brain locations. Specifically, the first 150 s of NH during desaturation differed significantly from the other conditions with negative absolute alpha power-SpO correlations and positive MSE-SpO correlations. Once steadily desaturated, NH and HH had no significant differences in EEG-SpO correlations. Our findings indicate that the desaturating phase of hypoxia is a critical period in HAI courses, which would require developing strategies for mitigating the hypoxic stimulus in a real-world situation.
高海拔诱导(HAI)通过使用常压(NH)或低压(HH)缺氧模拟高海拔条件来训练个体识别缺氧症状。先前的研究表明,尽管吸入的氧气水平相当,但这些条件之间可能存在生理差异。特别是,这些条件对神经生理反应的差异尚不清楚。我们的研究旨在调查 NH 和 HH 条件下血氧饱和度(SpO )与神经反应之间的相关性。我们从 13 名参与者中记录了控制、NH 和 HH 条件下 5 分钟的睁眼静息状态脑电图(EEG)和 SpO 。我们应用了一种多变量框架来描述每个参与者和组水平上 SpO 和 EEG 测量值(光谱功率和多尺度熵[MSE])之间的相关性。参与者在 NH 的前 150 秒内饱和度下降,而在 HH 中则逐渐饱和度下降。我们分别考虑了整个时间间隔、前半部分和后半部分。所有条件均表现出具有统计学意义的 EEG-SpO 相关性的参与者特异性模式。然而,在组水平上,整个缺氧期表现出跨频率和脑区的这些相关性的稳健模式。具体来说,在 NH 饱和度下降的前 150 秒与其他条件显著不同,表现为绝对 alpha 功率-SpO 相关性为负,MSE-SpO 相关性为正。一旦稳定饱和度下降,NH 和 HH 之间的 EEG-SpO 相关性没有显著差异。我们的研究结果表明,缺氧的饱和度下降期是 HAI 课程的一个关键时期,这将需要制定策略来减轻现实世界情况下的缺氧刺激。