Suppr超能文献

带有过量控制的混合连续评估方法,用于更安全的剂量递增。

Hybrid continuous reassessment method with overdose control for safer dose escalation.

机构信息

Statistics and Decision Sciences, Janssen Research & Development LLC, West Bridgewater, USA.

Experimental Medicine Early Development Oncology, Janssen Research & Development LLC, Spring House, PA, USA.

出版信息

J Biopharm Stat. 2023 Sep 3;33(5):586-595. doi: 10.1080/10543406.2023.2170401. Epub 2023 Jan 30.

Abstract

Phase 1 oncology studies focus on safety of novel treatments and identifying a dose associated with acceptable toxicity level. Various model-based designs have been proposed for guiding dose escalation and estimating maximum tolerated dose in dose-finding studies. However, these methods are either excessively conservative or imprudent by allowing overly toxic doses. Transparent and easy to implement model-assisted designs have also received increasing attention but require pre-set rules including perceived dose levels. Therefore, we propose a hybrid model-based design that has a high probability to select MTD with a good balance of overdose control by disentangling in two separate models, which is flexible and easy to implement. Extensive simulations show the model to have real promise.

摘要

I 期肿瘤学研究主要关注新型治疗方法的安全性,并确定与可接受毒性水平相关的剂量。已经提出了各种基于模型的设计方法,用于指导剂量递增并估计剂量发现研究中的最大耐受剂量。然而,这些方法要么过于保守,要么通过允许毒性过大的剂量而过于轻率。透明且易于实施的模型辅助设计也受到越来越多的关注,但需要预先设定规则,包括感知的剂量水平。因此,我们提出了一种混合的基于模型的设计,通过在两个单独的模型中分离,具有很高的选择 MTD 的概率,并且通过良好的过度治疗控制来达到平衡,这种设计灵活且易于实施。广泛的模拟表明该模型具有真正的前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验