Sandra and Edward Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, New York.
Department of Chemistry, University of Chicago, Chicago, Illinois.
Cancer Discov. 2023 Apr 3;13(4):1002-1025. doi: 10.1158/2159-8290.CD-22-0805.
KRAS is the most frequently mutated oncogene in human lung adenocarcinomas (hLUAD), and activating mutations frequently co-occur with loss-of-function mutations in TP53 or STK11/LKB1. However, mutation of all three genes is rarely observed in hLUAD, even though engineered comutation is highly aggressive in mouse lung adenocarcinoma (mLUAD). Here, we provide a mechanistic explanation for this difference by uncovering an evolutionary divergence in the regulation of triosephosphate isomerase (TPI1). In hLUAD, TPI1 activity is regulated via phosphorylation at Ser21 by the salt inducible kinases (SIK) in an LKB1-dependent manner, modulating flux between the completion of glycolysis and production of glycerol lipids. In mice, Ser21 of TPI1 is a Cys residue that can be oxidized to alter TPI1 activity without a need for SIKs or LKB1. Our findings suggest this metabolic flexibility is critical in rapidly growing cells with KRAS and TP53 mutations, explaining why the loss of LKB1 creates a liability in these tumors.
Utilizing phosphoproteomics and metabolomics in genetically engineered human cell lines and genetically engineered mouse models (GEMM), we uncover an evolutionary divergence in metabolic regulation within a clinically relevant genotype of human LUAD with therapeutic implications. Our data provide a cautionary example of the limits of GEMMs as tools to study human diseases such as cancers. This article is highlighted in the In This Issue feature, p. 799.
KRAS 是人类肺腺癌(hLUAD)中最常发生突变的癌基因,激活突变常与 TP53 或 STK11/LKB1 的功能丧失性突变同时发生。然而,在 hLUAD 中很少观察到所有这三个基因的突变,尽管工程化的共突变在小鼠肺腺癌(mLUAD)中具有高度侵袭性。在这里,我们通过揭示三磷酸甘油异构酶(TPI1)调控的进化分歧,为这种差异提供了一个机制解释。在 hLUAD 中,TPI1 的活性通过 LKB1 依赖性方式被盐诱导激酶(SIK)在丝氨酸 21 位的磷酸化调节,调节糖酵解完成和甘油脂质生成之间的通量。在小鼠中,TPI1 的丝氨酸 21 位是一个半胱氨酸残基,可以被氧化,而无需 SIK 或 LKB1 来改变 TPI1 的活性。我们的发现表明,这种代谢灵活性对于具有 KRAS 和 TP53 突变的快速生长细胞至关重要,解释了为什么 LKB1 的缺失会在这些肿瘤中产生缺陷。
我们利用磷酸蛋白质组学和代谢组学在遗传工程化的人细胞系和遗传工程化小鼠模型(GEMM)中进行研究,揭示了在具有治疗意义的人类 LUAD 的临床相关基因型中代谢调控的进化分歧。我们的数据为 GEMM 作为研究人类疾病(如癌症)的工具的局限性提供了一个警示性的例子。本文在本期的重点介绍文章中进行了突出显示,第 799 页。