Control and Dynamical Systems, California Institute of Technology, Pasadena, California91125, United States.
Biology and Biological Engineering, California Institute of Technology, Pasadena, California91125, United States.
ACS Synth Biol. 2023 Feb 17;12(2):511-523. doi: 10.1021/acssynbio.2c00534. Epub 2023 Jan 30.
We present a full-stack modeling, analysis, and parameter identification pipeline to guide the modeling and design of biological systems starting from specifications to circuit implementations and parametrizations. We demonstrate this pipeline by characterizing the integrase and excisionase activity in a cell-free protein expression system. We build on existing Python tools─BioCRNpyler, AutoReduce, and Bioscrape─to create this pipeline. For enzyme-mediated DNA recombination in a cell-free system, we create detailed chemical reaction network models from simple high-level descriptions of the biological circuits and their context using BioCRNpyler. We use Bioscrape to show that the output of the detailed model is sensitive to many parameters. However, parameter identification is infeasible for this high-dimensional model; hence, we use AutoReduce to automatically obtain reduced models that have fewer parameters. This results in a hierarchy of reduced models under different assumptions to finally arrive at a minimal ODE model for each circuit. Then, we run sensitivity analysis-guided Bayesian inference using Bioscrape for each circuit to identify the model parameters. This process allows us to quantify integrase and excisionase activity in cell extracts enabling complex-circuit designs that depend on accurate control over protein expression levels through DNA recombination. The automated pipeline presented in this paper opens up a new approach to complex circuit design, modeling, reduction, and parametrization.
我们提出了一个完整的栈建模、分析和参数识别管道,从规范到电路实现和参数化,指导生物系统的建模和设计。我们通过在无细胞蛋白表达系统中表征整合酶和切除酶活性来演示这个管道。我们利用现有的 Python 工具——BioCRNpyler、AutoReduce 和 Bioscrape——来创建这个管道。对于无细胞系统中的酶介导的 DNA 重组,我们使用 BioCRNpyler 从生物电路及其上下文的简单高级描述创建详细的化学反应网络模型。我们使用 Bioscrape 表明详细模型的输出对许多参数敏感。然而,对于这个高维模型,参数识别是不可行的;因此,我们使用 AutoReduce 自动获得具有较少参数的简化模型。这导致在不同假设下的简化模型层次结构,最终为每个电路得到一个最小的 ODE 模型。然后,我们使用 Bioscrape 为每个电路运行基于敏感性分析的贝叶斯推断,以识别模型参数。这个过程使我们能够量化细胞提取物中的整合酶和切除酶活性,从而实现复杂电路设计,通过 DNA 重组实现对蛋白质表达水平的精确控制。本文提出的自动化管道为复杂电路设计、建模、简化和参数化开辟了一条新途径。