Suppr超能文献

弯曲感应是 septin 多尺度组装的一个新兴特性。

Curvature sensing as an emergent property of multiscale assembly of septins.

机构信息

Department of Applied Physical Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.

Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.

出版信息

Proc Natl Acad Sci U S A. 2023 Feb 7;120(6):e2208253120. doi: 10.1073/pnas.2208253120. Epub 2023 Jan 30.

Abstract

The ability of cells to sense and communicate their shape is central to many of their functions. Much is known about how cells generate complex shapes, yet how they sense and respond to geometric cues remains poorly understood. Septins are GTP-binding proteins that localize to sites of micrometer-scale membrane curvature. Assembly of septins is a multistep and multiscale process, but it is unknown how these discrete steps lead to curvature sensing. Here, we experimentally examine the time-dependent binding of septins at different curvatures and septin bulk concentrations. These experiments unexpectedly indicated that septins' curvature preference is not absolute but rather is sensitive to the combinations of membrane curvatures present in a reaction, suggesting that there is competition between different curvatures for septin binding. To understand the physical underpinning of this result, we developed a kinetic model that connects septins' self-assembly and curvature-sensing properties. Our experimental and modeling results are consistent with curvature-sensitive assembly being driven by cooperative associations of septin oligomers in solution with the bound septins. When combined, the work indicates that septin curvature sensing is an emergent property of the multistep, multiscale assembly of membrane-bound septins. As a result, curvature preference is not absolute and can be modulated by changing the physicochemical and geometric parameters involved in septin assembly, including bulk concentration, and the available membrane curvatures. While much geometry-sensitive assembly in biology is thought to be guided by intrinsic material properties of molecules, this is an important example of how curvature sensing can arise from multiscale assembly of polymers.

摘要

细胞感知和传达其形状的能力是其许多功能的核心。尽管人们已经了解了细胞如何生成复杂的形状,但它们如何感知和响应几何线索仍然知之甚少。GTP 结合蛋白 septin 定位于微米级膜曲率的部位。septin 的组装是一个多步骤和多尺度的过程,但尚不清楚这些离散步骤如何导致曲率感测。在这里,我们通过实验检查了 septin 在不同曲率和 septin 体浓度下的时间依赖性结合。这些实验出人意料地表明,septin 的曲率偏好不是绝对的,而是对反应中存在的膜曲率组合敏感,这表明不同曲率之间存在 septin 结合的竞争。为了理解这一结果的物理基础,我们开发了一个将 septin 自组装和曲率感测特性联系起来的动力学模型。我们的实验和建模结果与曲率敏感组装是由溶液中 septin 低聚物与结合的 septin 的协同缔合驱动的一致。当组合在一起时,这项工作表明 septin 曲率感测是膜结合 septin 的多步骤、多尺度组装的一个涌现特性。因此,曲率偏好不是绝对的,可以通过改变涉及 septin 组装的物理化学和几何参数来调节,包括体浓度和可用的膜曲率。虽然生物学中的许多几何敏感组装被认为是由分子的固有材料特性指导的,但这是一个重要的例子,说明了曲率感测如何从聚合物的多尺度组装中产生。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b178/9963131/23e1fab00adb/pnas.2208253120fig01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验