Suppr超能文献

利用狄利克雷先验分布、高斯过程先验分布和层次模型提高废物桶的贝叶斯放射性剖析。

Improving Bayesian radiological profiling of waste drums using Dirichlet priors, Gaussian process priors, and hierarchical modeling.

机构信息

Waste and Disposal, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Belgium.

Dismantling, Decontamination and Waste, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Belgium.

出版信息

Appl Radiat Isot. 2023 Apr;194:110691. doi: 10.1016/j.apradiso.2023.110691. Epub 2023 Jan 24.

Abstract

We present three methodological improvements of our recently proposed approach for Bayesian inference of the radionuclide inventory in radioactive waste drums, from radiological measurements. First we resort to the Dirichlet distribution for the prior distribution of the isotopic vector. The Dirichlet distribution possesses the attractive property that the elements of its vector samples sum up to 1. Second, we demonstrate that such Dirichlet priors can be incorporated within an hierarchical modeling of the prior uncertainty in the isotopic vector, when prior information about isotopic composition is available. Our used Bayesian hierarchical modeling framework makes use of this available information but also acknowledges its uncertainty by letting to a controlled extent the information content of the indirect measurement data (i.e., gamma and neutron counts) shape the actual prior distribution of the isotopic vector. Third, we propose to regularize the Bayesian inversion by using Gaussian process (GP) prior modeling when inferring 1D spatially-distributed mass or, equivalently, activity distributions. As of uncertainty in the efficiencies, we keep using the same stylized drum modeling approach as proposed in our previous work to account for the source distribution uncertainty across the vertical direction of the drum. A series of synthetic tests followed by application to a real waste drum show that combining hierarchical modeling of the prior isotopic composition uncertainty together with GP prior modeling of the vertical Pu profile across the drum works well. We also find that our GP prior can handles both cases with and without spatial correlation. Of course, our GP prior modeling framework only makes sense in the context of spatial inference. Furthermore, the computational times involved by our approach are on the order of a few hours, say about 2, to provide uncertainty estimates for all variables of interest in the considered inverse problem. This warrants further investigations to speed up the inference.

摘要

我们提出了我们最近提出的用于从放射性测量中推断放射性废物桶中放射性核素含量的贝叶斯推断方法的三个方法改进。首先,我们求助于狄利克雷分布作为同位素向量的先验分布。狄利克雷分布具有吸引人的性质,即其向量样本的元素之和为 1。其次,我们证明了当存在关于同位素组成的先验信息时,可以在同位素向量的先验不确定性的分层模型中纳入这种狄利克雷先验。我们使用的贝叶斯分层建模框架利用了这些可用信息,但也通过在一定程度上控制间接测量数据(即伽马和中子计数)的信息量来承认其不确定性,从而形成同位素向量的实际先验分布。第三,我们建议通过在推断一维空间分布的质量或等效的活动分布时使用高斯过程(GP)先验建模来正则化贝叶斯反演。关于效率的不确定性,我们仍然使用我们之前工作中提出的相同的筒状建模方法来解释筒内垂直方向上的源分布不确定性。一系列合成测试随后应用于真实废物筒,结果表明,将先验同位素组成不确定性的分层建模与跨筒的 Pu 垂直轮廓的 GP 先验建模相结合效果很好。我们还发现,我们的 GP 先验可以处理有和没有空间相关性的两种情况。当然,我们的 GP 先验建模框架仅在空间推断的背景下才有意义。此外,我们的方法所涉及的计算时间在几个小时左右,大约 2 个小时,以提供所考虑反问题中所有感兴趣变量的不确定性估计。这需要进一步的研究来加快推理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验