Suppr超能文献

相关矩阵和协方差矩阵的灵活贝叶斯动态建模

Flexible Bayesian Dynamic Modeling of Correlation and Covariance Matrices.

作者信息

Lan Shiwei, Holbrook Andrew, Elias Gabriel A, Fortin Norbert J, Ombao Hernando, Shahbaba Babak

机构信息

School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85287.

David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095.

出版信息

Bayesian Anal. 2020 Dec;15(4):1199-1228. doi: 10.1214/19-ba1173. Epub 2019 Nov 4.

Abstract

Modeling correlation (and covariance) matrices can be challenging due to the positive-definiteness constraint and potential high-dimensionality. Our approach is to decompose the covariance matrix into the correlation and variance matrices and propose a novel Bayesian framework based on modeling the correlations as products of unit vectors. By specifying a wide range of distributions on a sphere (e.g. the squared-Dirichlet distribution), the proposed approach induces flexible prior distributions for covariance matrices (that go beyond the commonly used inverse-Wishart prior). For modeling real-life spatio-temporal processes with complex dependence structures, we extend our method to dynamic cases and introduce unit-vector Gaussian process priors in order to capture the evolution of correlation among components of a multivariate time series. To handle the intractability of the resulting posterior, we introduce the adaptive Δ-Spherical Hamiltonian Monte Carlo. We demonstrate the validity and flexibility of our proposed framework in a simulation study of periodic processes and an analysis of rat's local field potential activity in a complex sequence memory task.

摘要

由于正定约束和潜在的高维性,对相关矩阵(和协方差矩阵)进行建模可能具有挑战性。我们的方法是将协方差矩阵分解为相关矩阵和方差矩阵,并基于将相关性建模为单位向量的乘积提出一种新颖的贝叶斯框架。通过在球面上指定广泛的分布(例如平方狄利克雷分布),所提出的方法为协方差矩阵引入了灵活的先验分布(超出了常用的逆威沙特先验)。为了对具有复杂依赖结构的现实时空过程进行建模,我们将方法扩展到动态情况,并引入单位向量高斯过程先验,以捕捉多元时间序列各分量之间相关性的演变。为了处理所得后验分布的难处理性,我们引入了自适应Δ-球面哈密顿蒙特卡罗方法。我们在周期性过程的模拟研究以及复杂序列记忆任务中大鼠局部场电位活动的分析中证明了我们提出的框架的有效性和灵活性。

相似文献

2
Restricted Covariance Priors with Applications in Spatial Statistics.空间统计中受限协方差先验及其应用
Bayesian Anal. 2015 Dec 1;10(4):965-990. doi: 10.1214/14-BA927. Epub 2015 Feb 4.
5
Bayesian Covariance Structure Modeling of Responses and Process Data.响应与过程数据的贝叶斯协方差结构建模
Front Psychol. 2019 Aug 5;10:1675. doi: 10.3389/fpsyg.2019.01675. eCollection 2019.
8
Modeling Covariance Matrices via Partial Autocorrelations.通过偏自相关对协方差矩阵进行建模。
J Multivar Anal. 2009 Nov 1;100(10):2352-2363. doi: 10.1016/j.jmva.2009.04.015.

本文引用的文献

1
Subgradient ellipsoid method for nonsmooth convex problems.非光滑凸问题的次梯度椭球法
Math Program. 2023;199(1-2):305-341. doi: 10.1007/s10107-022-01833-4. Epub 2022 Jun 14.
3
Nonspatial sequence coding varies along the CA1 transverse axis.非空间序列编码沿CA1横轴变化。
Behav Brain Res. 2018 Nov 15;354:39-47. doi: 10.1016/j.bbr.2017.10.015. Epub 2017 Oct 28.
5
Nonspatial Sequence Coding in CA1 Neurons.CA1神经元中的非空间序列编码
J Neurosci. 2016 Feb 3;36(5):1547-63. doi: 10.1523/JNEUROSCI.2874-15.2016.
6
Markov Chain Monte Carlo from Lagrangian Dynamics.基于拉格朗日动力学的马尔可夫链蒙特卡罗方法。
J Comput Graph Stat. 2015 Apr 1;24(2):357-378. doi: 10.1080/10618600.2014.902764.
8
Geodesic Monte Carlo on Embedded Manifolds.嵌入流形上的测地线蒙特卡罗
Scand Stat Theory Appl. 2013 Dec;40(4):825-845. doi: 10.1111/sjos.12036. Epub 2013 Sep 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验