Lan Shiwei, Holbrook Andrew, Elias Gabriel A, Fortin Norbert J, Ombao Hernando, Shahbaba Babak
School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85287.
David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095.
Bayesian Anal. 2020 Dec;15(4):1199-1228. doi: 10.1214/19-ba1173. Epub 2019 Nov 4.
Modeling correlation (and covariance) matrices can be challenging due to the positive-definiteness constraint and potential high-dimensionality. Our approach is to decompose the covariance matrix into the correlation and variance matrices and propose a novel Bayesian framework based on modeling the correlations as products of unit vectors. By specifying a wide range of distributions on a sphere (e.g. the squared-Dirichlet distribution), the proposed approach induces flexible prior distributions for covariance matrices (that go beyond the commonly used inverse-Wishart prior). For modeling real-life spatio-temporal processes with complex dependence structures, we extend our method to dynamic cases and introduce unit-vector Gaussian process priors in order to capture the evolution of correlation among components of a multivariate time series. To handle the intractability of the resulting posterior, we introduce the adaptive Δ-Spherical Hamiltonian Monte Carlo. We demonstrate the validity and flexibility of our proposed framework in a simulation study of periodic processes and an analysis of rat's local field potential activity in a complex sequence memory task.
由于正定约束和潜在的高维性,对相关矩阵(和协方差矩阵)进行建模可能具有挑战性。我们的方法是将协方差矩阵分解为相关矩阵和方差矩阵,并基于将相关性建模为单位向量的乘积提出一种新颖的贝叶斯框架。通过在球面上指定广泛的分布(例如平方狄利克雷分布),所提出的方法为协方差矩阵引入了灵活的先验分布(超出了常用的逆威沙特先验)。为了对具有复杂依赖结构的现实时空过程进行建模,我们将方法扩展到动态情况,并引入单位向量高斯过程先验,以捕捉多元时间序列各分量之间相关性的演变。为了处理所得后验分布的难处理性,我们引入了自适应Δ-球面哈密顿蒙特卡罗方法。我们在周期性过程的模拟研究以及复杂序列记忆任务中大鼠局部场电位活动的分析中证明了我们提出的框架的有效性和灵活性。