Wilhelm Roland C, DeRito Christopher M, Shapleigh James P, Madsen Eugene L, Buckley Daniel H
School of Integrative Plant Science, Bradfield Hall, Cornell University, Ithaca, NY, USA.
Department of Microbiology, Wing Hall, Cornell University, Ithaca, NY, USA.
ISME Commun. 2021 Mar 25;1(1):4. doi: 10.1038/s43705-021-00009-z.
Plant-derived phenolic acids are catabolized by soil microorganisms whose activity may enhance the decomposition of soil organic carbon (SOC). We characterized whether phenolic acid-degrading bacteria enhance SOC mineralization in forest soils when primed with C-labeled p-hydroxybenzoic acid (pHB). We further tested whether pHB-induced priming could explain differences in SOC content among mono-specific tree plantations in a 70-year-old common garden experiment. pHB addition primed significant losses of SOC (3-13 µmols C g dry wt soil over 7 days) compared to glucose, which reduced mineralization (-3 to -8 µmols C g dry wt soil over 7 days). The principal degraders of pHB were Paraburkholderia and Caballeronia in all plantations regardless of tree species or soil type, with one predominant phylotype (RP11) enriched 23-fold following peak pHB respiration. We isolated and confirmed the phenolic degrading activity of a strain matching this phylotype (RP11), which encoded numerous oxidative enzymes, including secretion signal-bearing laccase, Dyp-type peroxidase and aryl-alcohol oxidase. Increased relative abundance of RP11 corresponded with higher pHB respiration and expression of pHB monooxygenase (pobA), which was inversely proportional to SOC content among plantations. pobA expression proved a responsive measure of priming activity. We found that stimulating phenolic-acid degrading bacteria can prime decomposition and that this activity, corresponding with differences in tree species, is a potential mechanism in SOC cycling in forests. Overall, this study highlights the ecology and function of Paraburkholderia whose associations with plant roots and capacity to degrade phenolics suggest a role for specialized bacteria in the priming effect.
植物源酚酸可被土壤微生物分解代谢,这些微生物的活动可能会促进土壤有机碳(SOC)的分解。我们研究了在以碳标记的对羟基苯甲酸(pHB)引发时,降解酚酸的细菌是否会增强森林土壤中SOC的矿化作用。在一项为期70年的普通园圃实验中,我们进一步测试了pHB引发是否可以解释单一种植园之间SOC含量的差异。与葡萄糖相比,添加pHB引发了显著的SOC损失(7天内为3-13微摩尔碳/克干重土壤),而葡萄糖则减少了矿化作用(7天内为-3至-8微摩尔碳/克干重土壤)。在所有种植园中,无论树种或土壤类型如何,pHB的主要降解菌都是类伯克霍尔德氏菌属和卡瓦勒罗尼亚菌属,在pHB呼吸峰值后,一种主要的系统发育型(RP11)富集了23倍。我们分离并确认了与该系统发育型(RP11)匹配的菌株的酚类降解活性,该菌株编码多种氧化酶,包括带有分泌信号的漆酶、Dyp型过氧化物酶和芳基醇氧化酶。RP11相对丰度的增加与更高的pHB呼吸作用和pHB单加氧酶(pobA)的表达相对应,而pobA的表达与种植园中的SOC含量成反比。pobA表达被证明是引发活性的一种响应指标。我们发现,刺激酚酸降解细菌可以引发分解作用,并且这种与树种差异相关的活性是森林中SOC循环的一种潜在机制。总体而言,本研究突出了类伯克霍尔德氏菌属的生态学和功能,其与植物根系的关联以及降解酚类物质的能力表明,特定细菌在引发效应中发挥了作用。