Suppr超能文献

同时调整多偏倚模型中的未控制混杂、选择偏倚和分类错误。

Simultaneous adjustment of uncontrolled confounding, selection bias and misclassification in multiple-bias modelling.

机构信息

Department of Epidemiology, Fielding School of Public Health, UCLA, Los Angeles, CA, USA.

Valo Health, Boston, MA, USA.

出版信息

Int J Epidemiol. 2023 Aug 2;52(4):1220-1230. doi: 10.1093/ije/dyad001.

Abstract

BACKGROUND

Adjusting for multiple biases usually involves adjusting for one bias at a time, with careful attention to the order in which these biases are adjusted. A novel, alternative approach to multiple-bias adjustment involves the simultaneous adjustment of all biases via imputation and/or regression weighting. The imputed value or weight corresponds to the probability of the missing data and serves to 'reconstruct' the unbiased data that would be observed based on the provided assumptions of the degree of bias.

METHODS

We motivate and describe the steps necessary to implement this method. We also demonstrate the validity of this method through a simulation study with an exposure-outcome relationship that is biased by uncontrolled confounding, exposure misclassification, and selection bias.

RESULTS

The study revealed that a non-biased effect estimate can be obtained when correct bias parameters are applied. It also found that incorrect specification of every bias parameter by +/-25% still produced an effect estimate with less bias than the observed, biased effect.

CONCLUSIONS

Simultaneous multi-bias analysis is a useful way of investigating and understanding how multiple sources of bias may affect naive effect estimates. This new method can be used to enhance the validity and transparency of real-world evidence obtained from observational, longitudinal studies.

摘要

背景

调整多重偏倚通常涉及一次调整一个偏倚,并仔细注意调整这些偏倚的顺序。一种新颖的、替代的多偏倚调整方法涉及通过插补和/或回归加权同时调整所有偏倚。所得到的插补值或权重对应于缺失数据的概率,并用于根据偏倚程度的假设“重建”根据所提供的假设观察到的无偏数据。

方法

我们提出并描述了实施该方法所需的步骤。我们还通过一项涉及暴露-结局关系的模拟研究验证了该方法的有效性,该关系受到未控制混杂、暴露错误分类和选择偏倚的影响。

结果

研究表明,当应用正确的偏倚参数时,可以得到无偏的效应估计值。还发现,每个偏倚参数的不正确指定为 +/-25%,仍然产生比观察到的有偏效应更偏倚的效应估计值。

结论

同时进行多偏倚分析是一种研究和理解多种偏倚源如何影响单纯效应估计的有用方法。这种新方法可用于提高从观察性、纵向研究中获得的真实世界证据的有效性和透明度。

相似文献

本文引用的文献

1
Multiple-bias Sensitivity Analysis Using Bounds.基于界的多重偏差敏感性分析。
Epidemiology. 2021 Sep 1;32(5):625-634. doi: 10.1097/EDE.0000000000001380.
2
Real-World Evidence: A Primer.真实世界证据:入门指南。
J Orthop Trauma. 2021 Mar 1;35(Suppl 1):S1-S5. doi: 10.1097/BOT.0000000000002037.
3
Quantitative bias analysis for study and grant planning.定量偏倚分析在研究和资助计划中的应用。
Ann Epidemiol. 2020 Mar;43:32-36. doi: 10.1016/j.annepidem.2020.01.013. Epub 2020 Feb 11.
6
Sensitivity Analysis in Observational Research: Introducing the E-Value.观察性研究中的敏感性分析:引入 E 值。
Ann Intern Med. 2017 Aug 15;167(4):268-274. doi: 10.7326/M16-2607. Epub 2017 Jul 11.
8
Bias Analysis for Uncontrolled Confounding in the Health Sciences.健康科学中未控制混杂的偏倚分析。
Annu Rev Public Health. 2017 Mar 20;38:23-38. doi: 10.1146/annurev-publhealth-032315-021644. Epub 2017 Jan 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验