文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种利用瞬态脉冲分析测量非绝热系统中磁性纳米颗粒加热效率的新方法。

A new method to measure magnetic nanoparticle heating efficiency in non-adiabatic systems using transient pulse analysis.

作者信息

Carlton Hayden, Ivkov Robert

机构信息

Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA.

出版信息

J Appl Phys. 2023 Jan 28;133(4):044302. doi: 10.1063/5.0131058. Epub 2023 Jan 27.


DOI:10.1063/5.0131058
PMID:36718210
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9884152/
Abstract

Heating magnetic nanoparticles (MNPs) with alternating magnetic fields (AMFs) have applications in biomedical research and cancer therapy. Accurate measurement of the heating efficiency or specific loss power (SLP) generated by the MNPs is essential to assess response(s) in biological systems. Efforts to develop standardized equipment and to harmonize results obtained from various MNP samples and AMF systems have met with little success. Without a standardized magnetic nanoparticle or calorimeter device, objective comparisons of estimated thermal output among laboratories remain a challenge. In addition, the most widely used adiabatic initial slope model fails to account for thermal losses, which are unavoidable. We propose a non-adiabatic method to analyze MNP heating efficiency derived from the Box-Lucas equation, wherein the sample is subjected to several short duration heating pulses. SLP is then estimated from an arithmetic average of the Box-Lucas fitted coefficients obtained from each pulse. Heating experiments were conducted with two identical samples that were placed within vessels having different thermal insulation using the same AMF parameters. Though the samples generated different temperature curves, the pulsed Box-Lucas method produced nearly equivalent SLP estimates. Further, the pulsed test enabled analysis of the heat transfer coefficient providing quantitative measures of sample heat loss throughout the test, with robust statistical confidence. We anticipate this new methodology will aid efforts to standardize measurements of MNP heating efficiency, enabling direct comparison among varied systems.

摘要

用交变磁场(AMF)加热磁性纳米颗粒(MNP)在生物医学研究和癌症治疗中具有应用价值。准确测量MNP产生的加热效率或比损耗功率(SLP)对于评估生物系统中的反应至关重要。开发标准化设备以及协调从各种MNP样品和AMF系统获得的结果的努力收效甚微。如果没有标准化的磁性纳米颗粒或量热计设备,各实验室之间对估计热输出进行客观比较仍然是一项挑战。此外,最广泛使用的绝热初始斜率模型无法考虑不可避免的热损失。我们提出一种非绝热方法,用于分析从Box-Lucas方程导出的MNP加热效率,其中样品受到几个短持续时间的加热脉冲。然后根据从每个脉冲获得的Box-Lucas拟合系数的算术平均值来估计SLP。使用相同的AMF参数,对放置在具有不同热绝缘的容器中的两个相同样品进行加热实验。尽管样品产生了不同的温度曲线,但脉冲Box-Lucas方法产生的SLP估计值几乎相同。此外,脉冲测试能够分析传热系数,在整个测试过程中提供样品热损失的定量测量,具有可靠的统计置信度。我们预计这种新方法将有助于实现MNP加热效率测量的标准化,从而能够在不同系统之间进行直接比较。

相似文献

[1]
A new method to measure magnetic nanoparticle heating efficiency in non-adiabatic systems using transient pulse analysis.

J Appl Phys. 2023-1-28

[2]
Experimental estimation and analysis of variance of the measured loss power of magnetic nanoparticles.

Sci Rep. 2017-7-27

[3]
MONITORING PERFUSION-BASED CONVECTION IN CANCER TUMOR TISSUE UNDERGOING NANOPARTICLE HEATING BY ANALYZING TEMPERATURE RESPONSES TO TRANSIENT PULSED HEATING.

Proc ASME Summer Heat Transf Conf. 2023-7

[4]
Design and Assessment of a Novel Biconical Human-Sized Alternating Magnetic Field Coil for MNP Hyperthermia Treatment of Deep-Seated Cancer.

Cancers (Basel). 2023-3-8

[5]
The impact of data selection and fitting on SAR estimation for magnetic nanoparticle heating.

Int J Hyperthermia. 2020-12

[6]
Evaluation of magnetic nanoparticles for magnetic fluid hyperthermia.

Int J Hyperthermia. 2019

[7]
Magnetothermoacoustics from magnetic nanoparticles by short bursting or frequency chirped alternating magnetic field: a theoretical feasibility analysis.

Med Phys. 2013-6

[8]
Toward the Separation of Different Heating Mechanisms in Magnetic Particle Hyperthermia.

ACS Omega. 2023-3-30

[9]
A prediction model for magnetic particle imaging-based magnetic hyperthermia applied to a brain tumor model.

Comput Methods Programs Biomed. 2023-6

[10]
A setup to measure the temperature-dependent heating power of magnetically heated nanoparticles up to high temperature.

Rev Sci Instrum. 2021-5-1

引用本文的文献

[1]
Magnetic particle imaging resolution needed for magnetic hyperthermia treatment planning: a sensitivity analysis.

Front Therm Eng. 2025

[2]
Ranking Magnetic Colloid Performance for Magnetic Particle Imaging and Magnetic Particle Hyperthermia.

Adv Funct Mater. 2025-1-9

[3]
Beyond Newton's law of cooling in evaluating magnetic hyperthermia performance: a device-independent procedure.

Nanoscale Adv. 2024-6-25

[4]
Magnetic Particle Imaging-Guided Thermal Simulations for Magnetic Particle Hyperthermia.

Nanomaterials (Basel). 2024-6-20

[5]
HYPER: pre-clinical device for spatially-confined magnetic particle hyperthermia.

Int J Hyperthermia. 2023

[6]
MONITORING PERFUSION-BASED CONVECTION IN CANCER TUMOR TISSUE UNDERGOING NANOPARTICLE HEATING BY ANALYZING TEMPERATURE RESPONSES TO TRANSIENT PULSED HEATING.

Proc ASME Summer Heat Transf Conf. 2023-7

[7]
Development of a Treatment Planning Framework for Laser Interstitial Thermal Therapy (LITT).

Cancers (Basel). 2023-9-14

本文引用的文献

[1]
Clinical magnetic hyperthermia requires integrated magnetic particle imaging.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022-5

[2]
Magnetic nanoparticles hyperthermia in a non-adiabatic and radiating process.

Sci Rep. 2021-6-4

[3]
Validation of a coupled electromagnetic and thermal model for estimating temperatures during magnetic nanoparticle hyperthermia.

Int J Hyperthermia. 2021

[4]
Challenges and recommendations for magnetic hyperthermia characterization measurements.

Int J Hyperthermia. 2021

[5]
Magnetic nanoparticle hyperthermia for treating locally advanced unresectable and borderline resectable pancreatic cancers: the role of tumor size and eddy-current heating.

Int J Hyperthermia. 2020-12

[6]
magnetic nanoparticle hyperthermia: a review on preclinical studies, low-field nano-heaters, noninvasive thermometry and computer simulations for treatment planning.

Int J Hyperthermia. 2020-12

[7]
Design and construction of a Maxwell-type induction coil for magnetic nanoparticle hyperthermia.

Int J Hyperthermia. 2020

[8]
An optimised spectrophotometric assay for convenient and accurate quantitation of intracellular iron from iron oxide nanoparticles.

Int J Hyperthermia. 2017-7-31

[9]
Experimental estimation and analysis of variance of the measured loss power of magnetic nanoparticles.

Sci Rep. 2017-7-27

[10]
Physics of heat generation using magnetic nanoparticles for hyperthermia.

Int J Hyperthermia. 2013-10-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索