Myrovali Eirini, Papadopoulos Kyrillos, Charalampous Georgia, Kesapidou Paraskevi, Vourlias George, Kehagias Thomas, Angelakeris Makis, Wiedwald Ulf
School of Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece.
MagnaCharta, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki 57001, Greece.
ACS Omega. 2023 Mar 30;8(14):12955-12967. doi: 10.1021/acsomega.2c05962. eCollection 2023 Apr 11.
Magnetic particle hyperthermia (MPH) is a promising method for cancer treatment using magnetic nanoparticles (MNPs), which are subjected to an alternating magnetic field for local heating to the therapeutic range of 41-45 °C. In this window, the malignant regions (i.e., cancer cells) undergo a severe thermal shock while healthy tissues sustain this thermal regime with significantly milder side effects. Since the heating efficiency is directly associated with nanoparticle size, MNPs should acquire the appropriate size to maximize heating together with minimum toxicity. Herein, we report on facile synthetic controls to synthesize MNPs by an aqueous precipitation method, whereby tuning the pH values of the solution (9.0-13.5) results in a wide range of average MNP diameters from 16 to 76 nm. With respect to their size, the structural and magnetic properties of the MNPs are evaluated by adjusting the most important parameters, i.e. the MNP surrounding medium (water/agarose), the MNP concentration (1-4 mg mL), and the field amplitude (20-50 mT) and frequency (103, 375, 765 kHz). Consequently, the maximum heating efficiency is determined for each MNP size and set of parameters, outlining the optimum MNPs for MPH treatment. In this way, we can address the different heat generation mechanisms (Brownian, Néel, and hysteresis losses) to different sizes and separate Brownian and hysteresis losses for optimized sizes by studying the heat generation as a function of the medium viscosity. Finally, MNPs immobilized into agarose solution are studied under low-field MPH treatment to find the optimum conditions for clinical applications.
磁粒子热疗(MPH)是一种利用磁性纳米粒子(MNPs)进行癌症治疗的有前景的方法,磁性纳米粒子在交变磁场作用下局部加热至41-45°C的治疗温度范围。在此温度区间内,恶性区域(即癌细胞)会遭受严重的热休克,而健康组织能承受这种热状态,且副作用明显较轻。由于加热效率与纳米粒子尺寸直接相关,MNPs应具备合适的尺寸,以实现加热效果最大化并使毒性最小化。在此,我们报道了通过水相沉淀法合成MNPs的简便合成控制方法,通过调节溶液的pH值(9.0-13.5),可得到平均直径范围为16至76nm的多种MNPs。就其尺寸而言,通过调整最重要的参数,即MNPs的周围介质(水/琼脂糖)、MNPs浓度(1-4mg/mL)、场强幅度(20-50mT)和频率(103、375、765kHz),来评估MNPs的结构和磁性特性。因此,针对每种MNPs尺寸和参数组合确定了最大加热效率,勾勒出用于MPH治疗的最佳MNPs。通过这种方式,我们可以针对不同尺寸探讨不同的发热机制(布朗、奈尔和磁滞损耗),并通过研究发热与介质粘度的函数关系,将布朗损耗和磁滞损耗分离出来,以优化尺寸。最后,对固定在琼脂糖溶液中的MNPs进行低场MPH治疗研究,以寻找临床应用的最佳条件。