Suppr超能文献

用于新冠肺炎患者分析的基于改进深度模糊聚类的贫富海豚优化算法

Poor and rich dolphin optimization algorithm with modified deep fuzzy clustering for COVID-19 patient analysis.

作者信息

Dhandapani Sudhagar, Jerald Rodriguez Arokia Renjit

机构信息

Jerusalem College of Engineering Chennai India.

Department of Computer Science and Engineering Jeppiaar Engineering College Chennai India.

出版信息

Concurr Comput. 2023 Jan 25;35(2):e7456. doi: 10.1002/cpe.7456. Epub 2022 Nov 11.

Abstract

The Coronavirus disease 2019 (COVID-19) is considered as a pandemic by the World Health Organization (WHO), which has spread worldwide. Over millions of peoples are infected across the globe and several people are died. However, the most worrying group of patients suffered from lung severity with respiratory failure. Hence, cluster analysis is utilized for examining the heterogeneity of diseases for determining various clinical phenotypes having the same traits. This article devises an optimization-driven technique for COVID-19 patient analysis using the spark framework. Here, the input data is partitioned and fed to different slave nodes. In slave node, the selection of imperative features is done using the proposed poor and rich dolphin optimization algorithm (PRDOA). The proposed PRDOA is obtained by combining poor and rich (PRO) and dolphin echolation (DE) algorithm. The fitness is newly devised considering Minkowski distance measure. The clustering is performed on the master node using the proposed Tanimoto-based deep fuzzy clustering (TDFC) for effective COVID-19 patient analysis. Thus, the proposed TDFC is obtained by incorporating Tanimoto concept and deep fuzzy clustering. The proposed PRDOA with TDFC offered enhanced performance with the highest clustering accuracy of 89.8%, dice coefficient of 90%, Jaccard coefficient of 85.7%, and rand coefficient of 85.7%.

摘要

2019年冠状病毒病(COVID-19)被世界卫生组织(WHO)视为大流行病,已在全球蔓延。全球数百万人感染,并有多人死亡。然而,最令人担忧的是患有严重肺部疾病并伴有呼吸衰竭的患者群体。因此,聚类分析被用于检查疾病的异质性,以确定具有相同特征的各种临床表型。本文设计了一种使用Spark框架的优化驱动技术来分析COVID-19患者。在这里,输入数据被分区并馈送到不同的从节点。在从节点中,使用提出的贫富海豚优化算法(PRDOA)进行重要特征的选择。所提出的PRDOA是通过结合贫富(PRO)和海豚回声定位(DE)算法获得的。适应度是根据闵可夫斯基距离度量新设计的。在主节点上使用提出的基于谷本的深度模糊聚类(TDFC)进行聚类,以有效地分析COVID-19患者。因此,所提出的TDFC是通过结合谷本概念和深度模糊聚类获得的。所提出的带有TDFC的PRDOA提供了更高的性能,聚类准确率最高达到89.8%,骰子系数为90%,杰卡德系数为85.7%,兰德系数为85.7%。

相似文献

本文引用的文献

7
Clustering analysis of countries using the COVID-19 cases dataset.使用新冠疫情病例数据集对各国进行聚类分析。
Data Brief. 2020 May 29;31:105787. doi: 10.1016/j.dib.2020.105787. eCollection 2020 Aug.
8
Nutraceutical supplement in the management of tendinopathies: a systematic review.营养保健品在肌腱病管理中的应用:一项系统评价
Muscles Ligaments Tendons J. 2016 May 19;6(1):48-57. doi: 10.11138/mltj/2016.6.1.048. eCollection 2016 Jan-Mar.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验