Shokoueinejad Mehdi, Park Dong-Wook, Jung Yei Hwan, Brodnick Sarah K, Novello Joseph, Dingle Aaron, Swanson Kyle I, Baek Dong-Hyun, Suminski Aaron J, Lake Wendell B, Ma Zhenqiang, Williams Justin
Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
Department of Neurosurgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA.
Micromachines (Basel). 2019 Jan 17;10(1):62. doi: 10.3390/mi10010062.
Since the 1940s electrocorticography (ECoG) devices and, more recently, in the last decade, micro-electrocorticography (µECoG) cortical electrode arrays were used for a wide set of experimental and clinical applications, such as epilepsy localization and brain⁻computer interface (BCI) technologies. Miniaturized implantable µECoG devices have the advantage of providing greater-density neural signal acquisition and stimulation capabilities in a minimally invasive fashion. An increased spatial resolution of the µECoG array will be useful for greater specificity diagnosis and treatment of neuronal diseases and the advancement of basic neuroscience and BCI research. In this review, recent achievements of ECoG and µECoG are discussed. The electrode configurations and varying material choices used to design µECoG arrays are discussed, including advantages and disadvantages of µECoG technology compared to electroencephalography (EEG), ECoG, and intracortical electrode arrays. Electrode materials that are the primary focus include platinum, iridium oxide, poly(3,4-ethylenedioxythiophene) (PEDOT), indium tin oxide (ITO), and graphene. We discuss the biological immune response to µECoG devices compared to other electrode array types, the role of µECoG in clinical pathology, and brain⁻computer interface technology. The information presented in this review will be helpful to understand the current status, organize available knowledge, and guide future clinical and research applications of µECoG technologies.
自20世纪40年代以来,皮质脑电图(ECoG)设备,以及最近在过去十年中,微皮质脑电图(µECoG)皮质电极阵列被用于广泛的实验和临床应用,如癫痫定位和脑机接口(BCI)技术。小型化可植入µECoG设备具有以微创方式提供更高密度神经信号采集和刺激能力的优势。µECoG阵列空间分辨率的提高将有助于更特异性地诊断和治疗神经元疾病,以及推动基础神经科学和BCI研究的发展。在这篇综述中,将讨论ECoG和µECoG的最新成果。还将讨论用于设计µECoG阵列的电极配置和不同的材料选择,包括µECoG技术与脑电图(EEG)、ECoG和皮质内电极阵列相比的优缺点。主要关注的电极材料包括铂、氧化铱、聚(3,4-乙撑二氧噻吩)(PEDOT)、氧化铟锡(ITO)和石墨烯。我们将讨论与其他电极阵列类型相比,µECoG设备的生物免疫反应、µECoG在临床病理学中的作用以及脑机接口技术。这篇综述中呈现的信息将有助于了解µECoG技术的现状、整理现有知识,并指导其未来的临床和研究应用。