Department of Clinical & Pharmaceutical Sciences, Faculty of Pharma Science, Teikyo University, Itabashi-Ku, Tokyo, 173-8605, Japan.
Pharm Res. 2023 Mar;40(3):711-719. doi: 10.1007/s11095-023-03477-1. Epub 2023 Jan 31.
Information on milk transferability of drugs is important for patients who wish to breastfeed. The purpose of this study is to develop a prediction model for milk-to-plasma drug concentration ratio based on area under the curve (M/P). The quantitative structure-activity/property relationship (QSAR/QSPR) approach was used to predict compounds involved in active transport during milk transfer.
We collected M/P ratio data from literature, which were curated and divided into M/P ≥ 1 and M/P < 1. Using the ADMET Predictor® and ADMET Modeler™, we constructed two types of binary classification models: an artificial neural network (ANN) and a support vector machine (SVM).
M/P ratios of 403 compounds were collected, M/P data were obtained for 173 compounds, while 230 compounds only had M/P values reported. The models were constructed using 129 of the 173 compounds, excluding colostrum data. The sensitivity of the ANN model was 0.969 for the training set and 0.833 for the test set, while the sensitivity of the SVM model was 0.971 for the training set and 0.667 for the test set. The contribution of the charge-based descriptor was high in both models.
We built a M/P prediction model using QSAR/QSPR. These predictive models can play an auxiliary role in evaluating the milk transferability of drugs.
了解药物在母乳中的可传递性信息对于希望母乳喂养的患者非常重要。本研究旨在建立一种基于曲线下面积(M/P)的预测药物在母乳中与血浆浓度比值(M/P)的模型。该研究采用定量构效关系(QSAR/QSPR)方法来预测在母乳转运过程中涉及主动转运的化合物。
我们从文献中收集了 M/P 比值数据,并对其进行了整理和分类,分为 M/P≥1 和 M/P<1。使用 ADMET Predictor® 和 ADMET Modeler™,我们构建了两种类型的二分类模型:人工神经网络(ANN)和支持向量机(SVM)。
共收集了 403 种化合物的 M/P 比值数据,其中 173 种化合物获得了 M/P 数据,而 230 种化合物仅报告了 M/P 值。模型是在 173 种化合物中的 129 种化合物上构建的,不包括初乳数据。ANN 模型在训练集和测试集的灵敏度分别为 0.969 和 0.833,而 SVM 模型在训练集和测试集的灵敏度分别为 0.971 和 0.667。在这两种模型中,基于电荷的描述符的贡献都很高。
我们使用 QSAR/QSPR 建立了 M/P 预测模型。这些预测模型可以在评估药物在母乳中的可传递性方面发挥辅助作用。