Suppr超能文献

用于医学图像分割的Top-k Bottom All but损失策略

Top-k Bottom All but Loss Strategy for Medical Image Segmentation.

作者信息

Florea Corneliu, Florea Laura, Vertan Constantin

机构信息

Image Processing and Analysis Laboratory (LAPI), National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independenţei, 060042 Bucharest, Romania.

出版信息

Diagnostics (Basel). 2025 Aug 29;15(17):2189. doi: 10.3390/diagnostics15172189.

Abstract

In this study we approach the problem of medical image segmentation by introducing a new loss function envelope that is derived from the Top-k loss strategy. We exploit the fact that, for semantic segmentation, the training loss is computed at two levels, more specifically at pixel level and at image level. Quite often, the envisaged problem has particularities that include noisy annotation at pixel level and limited data, but with accurate annotations at image level. To address the mentioned issues, the Top-k strategy at image level and respectively the "Bottom all but σ" strategy at pixel level are assumed. To deal with the discontinuities of the differentials faced in the automatic learning, a derivative smoothing procedure is introduced. The method is thoroughly and successfully tested (in conjunction with a variety of backbone models) for several medical image segmentation tasks performed onto a variety of image acquisition types and human body regions. We present the burned skin area segmentation in standard color images, the segmentation of fetal abdominal structures in ultrasound images and ventricles and myocardium segmentation in cardiac MRI images, in all cases yielding performance improvements. The proposed novel mechanism enhances model training by selectively emphasizing certain loss values by the use of two complementary strategies. The major benefits of the approach are clear in challenging scenarios, where the segmentation problem is inherently difficult or where the quality of pixel-level annotations is degraded by noise or inconsistencies. The proposed approach performs equally well in both convolutional neural networks (CNNs) and vision transformer (ViT) architectures.

摘要

在本研究中,我们通过引入一种源自Top-k损失策略的新损失函数包络来解决医学图像分割问题。我们利用了这样一个事实,即对于语义分割,训练损失是在两个层面上计算的,更具体地说是在像素层面和图像层面。通常,所设想的问题具有一些特殊性,包括像素层面的噪声标注和有限的数据,但图像层面的标注是准确的。为了解决上述问题,我们采用了图像层面的Top-k策略以及像素层面的“除σ外全部底部”策略。为了处理自动学习中面临的微分不连续性,我们引入了一种导数平滑程序。该方法针对多种图像采集类型和人体区域执行的多个医学图像分割任务进行了全面且成功的测试(结合各种骨干模型)。我们展示了标准彩色图像中的烧伤皮肤区域分割、超声图像中的胎儿腹部结构分割以及心脏MRI图像中的心室和心肌分割,在所有情况下都实现了性能提升。所提出的新颖机制通过使用两种互补策略选择性地强调某些损失值来增强模型训练。在具有挑战性的场景中,该方法的主要优势很明显,在这些场景中,分割问题本身就很困难,或者像素级标注的质量因噪声或不一致性而下降。所提出的方法在卷积神经网络(CNN)和视觉Transformer(ViT)架构中表现同样出色。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6302/12428111/d17dcbd6d309/diagnostics-15-02189-g005.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验