Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.
College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
ACS Biomater Sci Eng. 2023 Feb 13;9(2):601-607. doi: 10.1021/acsbiomaterials.2c01249. Epub 2023 Feb 1.
Multistep mineralization processes are pivotal in the fabrication of functional materials and are often characterized by far from equilibrium conditions and high supersaturation. Interestingly, such 'nonclassical' mineralization pathways are widespread in biological systems, even though concentrating molecules well beyond their saturation level is incompatible with cellular homeostasis. Here, we show how polymer phase separation can facilitate bioinspired silica formation by passively concentrating the inorganic building blocks within the polymer dense phase. The high affinity of the dense phase to mobile silica precursors generates a diffusive flux against the concentration gradient, similar to dynamic equilibrium, and the resulting high supersaturation leads to precipitation of insoluble silica. Manipulating the chemistry of the dense phase allows to control the delicate interplay between polymer chemistry and silica precipitation. These results connect two phase transition phenomena, mineralization and coacervation, and offer a framework to achieve better control of mineral formation.
多步骤的矿化过程是制备功能材料的关键,其通常具有远离平衡条件和高过饱和度的特点。有趣的是,尽管将分子浓缩到远超过其饱和度水平与细胞内的动态平衡相违背,但这种“非经典”的矿化途径在生物系统中非常普遍。在这里,我们展示了聚合物相分离如何通过被动地将无机构建块浓缩在聚合物致密相中,从而促进仿生二氧化硅的形成。致密相与可移动的二氧化硅前体之间的高亲和力会产生与浓度梯度相反的扩散通量,类似于动态平衡,由此产生的高过饱和度会导致不溶性二氧化硅的沉淀。控制致密相的化学性质可以控制聚合物化学和二氧化硅沉淀之间的微妙相互作用。这些结果将两种相转变现象(矿化和凝聚)联系起来,并为实现更好的矿物形成控制提供了一个框架。