Suppr超能文献

在不同的大肠杆菌谱系中,获得多药耐药质粒的进化反应主要由代谢功能主导。

Evolutionary Responses to Acquiring a Multidrug Resistance Plasmid Are Dominated by Metabolic Functions across Diverse Escherichia coli Lineages.

机构信息

Division of Evolution, Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester, United Kingdom.

School of Biosciences, University of Sheffield, United Kingdom.

出版信息

mSystems. 2023 Feb 23;8(1):e0071322. doi: 10.1128/msystems.00713-22. Epub 2023 Feb 1.

Abstract

Multidrug resistance (MDR) plasmids drive the spread of antibiotic resistance between bacterial lineages. The immediate impact of MDR plasmid acquisition on fitness and cellular processes varies among bacterial lineages, but how the evolutionary processes enabling the genomic integration of MDR plasmids vary is less well understood, particularly in clinical pathogens. Using diverse Escherichia coli lineages experimentally evolved for ~700 generations, we show that the evolutionary response to gaining the MDR plasmid pLL35 was dominated by chromosomal mutations affecting metabolic and regulatory functions, with both strain-specific and shared mutational targets. The expression of several of these functions, such as anaerobic metabolism, is known to be altered upon acquisition of pLL35. Interactions with resident mobile genetic elements, notably several IS-elements, potentiated parallel mutations, including insertions upstream of that were associated with its upregulation and the downregulation of the plasmid-encoded extended-spectrum beta-lactamase gene. Plasmid parallel mutations targeted conjugation-related genes, whose expression was also commonly downregulated in evolved clones. Beyond their role in horizontal gene transfer, plasmids can be an important selective force shaping the evolution of bacterial chromosomes and core cellular functions. Plasmids drive the spread of antimicrobial resistance genes between bacterial genomes. However, the evolutionary processes allowing plasmids to be assimilated by diverse bacterial genomes are poorly understood, especially in clinical pathogens. Using experimental evolution with diverse E. coli lineages and a clinical multidrug resistance plasmid, we show that although plasmids drove unique evolutionary paths per lineage, there was a surprising degree of convergence in the functions targeted by mutations across lineages, dominated by metabolic functions. Remarkably, these same metabolic functions show higher evolutionary rates in MDR-lineages in nature and in some cases, like anaerobic metabolism, their expression is directly manipulated by the plasmid. Interactions with other mobile elements resident in the genomes accelerated adaptation by disrupting genes and regulatory sequences that they inserted into. Beyond their role in horizontal gene transfer, plasmids are an important selective force driving the evolution of bacterial genomes and core cellular functions.

摘要

多药耐药 (MDR) 质粒推动了抗生素耐药性在细菌谱系之间的传播。MDR 质粒获得对适应性和细胞过程的直接影响因细菌谱系而异,但促进 MDR 质粒基因组整合的进化过程如何变化,特别是在临床病原体中,了解得较少。使用经过约 700 代实验进化的不同大肠杆菌谱系,我们表明,获得 MDR 质粒 pLL35 的进化反应主要由影响代谢和调节功能的染色体突变主导,具有菌株特异性和共同的突变靶点。这些功能的表达,如厌氧代谢,在获得 pLL35 后已知会发生改变。与驻留的可移动遗传元件(特别是几个 IS 元件)的相互作用增强了平行突变,包括在 上游的插入,这与它的上调和质粒编码的扩展谱β-内酰胺酶基因的下调有关。质粒平行突变靶向与接合相关的基因,这些基因在进化克隆中也通常下调。除了它们在水平基因转移中的作用外,质粒还可以成为塑造细菌染色体和核心细胞功能进化的重要选择力量。质粒在细菌基因组之间传播抗生素耐药基因。然而,允许质粒被不同细菌基因组同化的进化过程了解甚少,特别是在临床病原体中。使用具有不同大肠杆菌谱系的实验进化和临床多药耐药质粒,我们表明,尽管质粒为每个谱系驱动了独特的进化路径,但在谱系之间突变靶向的功能存在惊人的趋同程度,主要是代谢功能。值得注意的是,这些相同的代谢功能在自然界中的 MDR 谱系中表现出更高的进化率,在某些情况下,如厌氧代谢,它们的表达直接受到质粒的操纵。与基因组中驻留的其他可移动元件的相互作用通过破坏它们插入的基因和调节序列加速了适应。除了它们在水平基因转移中的作用外,质粒是推动细菌基因组和核心细胞功能进化的重要选择力量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ab5/9948715/fa7c855787f3/msystems.00713-22-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验