Institute for Biological Physics, University of Cologne, Cologne, Germany.
Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
Nat Ecol Evol. 2021 May;5(5):677-687. doi: 10.1038/s41559-021-01397-0. Epub 2021 Mar 4.
Bacteria evolve resistance to antibiotics by a multitude of mechanisms. A central, yet unsolved question is how resistance evolution affects cell growth at different drug levels. Here, we develop a fitness model that predicts growth rates of common resistance mutants from their effects on cell metabolism. The model maps metabolic effects of resistance mutations in drug-free environments and under drug challenge; the resulting fitness trade-off defines a Pareto surface of resistance evolution. We predict evolutionary trajectories of growth rates and resistance levels, which characterize Pareto resistance mutations emerging at different drug dosages. We also predict the prevalent resistance mechanism depending on drug and nutrient levels: low-dosage drug defence is mounted by regulation, evolution of distinct metabolic sectors sets in at successive threshold dosages. Evolutionary resistance mechanisms include membrane permeability changes and drug target mutations. These predictions are confirmed by empirical growth inhibition curves and genomic data of Escherichia coli populations. Our results show that resistance evolution, by coupling major metabolic pathways, is strongly intertwined with systems biology and ecology of microbial populations.
细菌通过多种机制对抗生素产生耐药性。一个核心但尚未解决的问题是,耐药性进化如何在不同药物水平下影响细胞生长。在这里,我们开发了一种适合度模型,该模型可以根据其对细胞代谢的影响来预测常见耐药突变体的生长速率。该模型映射了耐药突变在无药物环境和药物挑战下的代谢效应;由此产生的适合度权衡定义了耐药进化的 Pareto 曲面。我们预测了在不同药物剂量下出现的生长速率和耐药水平的进化轨迹,这些轨迹特征是 Pareto 耐药突变。我们还根据药物和营养水平预测了常见的耐药机制:低剂量药物防御是通过调节来实现的,在连续的阈值剂量下,会出现不同的代谢区域的进化。进化的耐药机制包括膜通透性变化和药物靶标突变。这些预测得到了大肠杆菌群体的经验性生长抑制曲线和基因组数据的验证。我们的结果表明,通过耦合主要代谢途径,耐药性进化与微生物种群的系统生物学和生态学紧密交织在一起。