Suppr超能文献

非冗余二甲基亚砜还原酶影响鼠伤寒沙门氏菌血清型 Typhimurium 的厌氧生长和毒力。

Nonredundant Dimethyl Sulfoxide Reductases Influence Salmonella enterica Serotype Typhimurium Anaerobic Growth and Virulence.

机构信息

Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA.

Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA.

出版信息

Infect Immun. 2023 Feb 16;91(2):e0057822. doi: 10.1128/iai.00578-22. Epub 2023 Feb 1.

Abstract

Facultative anaerobic enteric pathogens can utilize a diverse array of alternate electron acceptors to support anaerobic metabolism and thrive in the hypoxic conditions within the mammalian gut. Dimethyl sulfoxide (DMSO) is produced by methionine catabolism and can act as an alternate electron acceptor to support anaerobic respiration. The DMSO reductase complex consists of three subunits, DmsA, DmsB, and DmsC, and allows bacteria to grow anaerobically with DMSO as an electron acceptor. The genomes of nontyphoidal Salmonella enterica encode three putative operons, but the impact of the apparent genetic redundancy in DMSO reduction on the fitness of nontyphoidal S. enterica during infection remains unknown. We hypothesized that DMSO reduction would be needed for S. enterica serotype Typhimurium to colonize the mammalian gut. We demonstrate that an Typhimurium mutant with loss of function in all three putative DMSO reductases (Δ) poorly colonizes the mammalian intestine when the microbiota is intact and when inflammation is absent. DMSO reduction enhances anaerobic growth through nonredundant contributions of two of the DMSO reductases. Furthermore, DMSO reduction influences virulence by increasing expression of the type 3 secretion system 2 and reducing expression of the type 3 secretion system 1. Collectively, our data demonstrate that the DMSO reductases of Typhimurium are functionally nonredundant and suggest DMSO is a physiologically relevant electron acceptor that supports S. enterica fitness in the gut.

摘要

兼性厌氧菌肠道病原体可以利用多种替代电子受体来支持厌氧代谢,并在哺乳动物肠道内的低氧环境中茁壮成长。二甲基亚砜(DMSO)是由甲硫氨酸分解代谢产生的,可以作为替代电子受体来支持厌氧呼吸。DMSO 还原酶复合物由三个亚基(DmsA、DmsB 和 DmsC)组成,使细菌能够以 DMSO 作为电子受体进行厌氧生长。非伤寒沙门氏菌的基因组编码三个推定的 操纵子,但 DMSO 还原的明显遗传冗余对感染期间非伤寒沙门氏菌的适应性的影响尚不清楚。我们假设 DMSO 还原对于鼠伤寒沙门氏菌定植哺乳动物肠道是必要的。我们证明,当微生物群落完整且不存在炎症时,缺失所有三个推定的 DMSO 还原酶(Δ)的 Typhimurium 突变体在哺乳动物肠道中定植不良。DMSO 还原通过两种 DMSO 还原酶的非冗余贡献增强了厌氧生长。此外,DMSO 还原通过增加 II 型分泌系统的表达和降低 I 型分泌系统的表达来影响毒力。总的来说,我们的数据表明,鼠伤寒沙门氏菌的 DMSO 还原酶在功能上是非冗余的,并表明 DMSO 是一种生理相关的电子受体,可支持沙门氏菌在肠道中的适应性。

相似文献

引用本文的文献

本文引用的文献

2
HS and reactive sulfur signaling at the host-bacterial pathogen interface.宿主-细菌病原体界面的 HS 和反应性硫信号。
J Biol Chem. 2020 Sep 18;295(38):13150-13168. doi: 10.1074/jbc.REV120.011304. Epub 2020 Jul 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验