Suppr超能文献

联邦学习的医学应用综述。

Survey of Medical Applications of Federated Learning.

作者信息

Choi Geunho, Cha Won Chul, Lee Se Uk, Shin Soo-Yong

机构信息

Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, Korea.

Department of Emergency Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.

出版信息

Healthc Inform Res. 2024 Jan;30(1):3-15. doi: 10.4258/hir.2024.30.1.3. Epub 2024 Jan 31.

Abstract

OBJECTIVES

Medical artificial intelligence (AI) has recently attracted considerable attention. However, training medical AI models is challenging due to privacy-protection regulations. Among the proposed solutions, federated learning (FL) stands out. FL involves transmitting only model parameters without sharing the original data, making it particularly suitable for the medical field, where data privacy is paramount. This study reviews the application of FL in the medical domain.

METHODS

We conducted a literature search using the keywords "federated learning" in combination with "medical," "healthcare," or "clinical" on Google Scholar and PubMed. After reviewing titles and abstracts, 58 papers were selected for analysis. These FL studies were categorized based on the types of data used, the target disease, the use of open datasets, the local model of FL, and the neural network model. We also examined issues related to heterogeneity and security.

RESULTS

In the investigated FL studies, the most commonly used data type was image data, and the most studied target diseases were cancer and COVID-19. The majority of studies utilized open datasets. Furthermore, 72% of the FL articles addressed heterogeneity issues, while 50% discussed security concerns.

CONCLUSIONS

FL in the medical domain appears to be in its early stages, with most research using open data and focusing on specific data types and diseases for performance verification purposes. Nonetheless, medical FL research is anticipated to be increasingly applied and to become a vital component of multi-institutional research.

摘要

目标

医学人工智能(AI)最近引起了广泛关注。然而,由于隐私保护法规,训练医学AI模型具有挑战性。在提出的解决方案中,联邦学习(FL)脱颖而出。联邦学习只传输模型参数而不共享原始数据,这使其特别适用于数据隐私至关重要的医学领域。本研究回顾了联邦学习在医学领域的应用。

方法

我们在谷歌学术和PubMed上使用关键词“联邦学习”与“医学”、“医疗保健”或“临床”相结合进行文献检索。在审阅标题和摘要后,选择了58篇论文进行分析。这些联邦学习研究根据所使用的数据类型、目标疾病、开放数据集的使用、联邦学习的本地模型以及神经网络模型进行分类。我们还研究了与异质性和安全性相关的问题。

结果

在所调查的联邦学习研究中,最常用的数据类型是图像数据,研究最多的目标疾病是癌症和新冠肺炎。大多数研究使用了开放数据集。此外,72%的联邦学习文章讨论了异质性问题,而50%讨论了安全问题。

结论

医学领域的联邦学习似乎尚处于早期阶段,大多数研究使用开放数据,并专注于特定的数据类型和疾病以进行性能验证。尽管如此,医学联邦学习研究预计将得到越来越多的应用,并成为多机构研究的重要组成部分。

相似文献

1
Survey of Medical Applications of Federated Learning.联邦学习的医学应用综述。
Healthc Inform Res. 2024 Jan;30(1):3-15. doi: 10.4258/hir.2024.30.1.3. Epub 2024 Jan 31.
2
Federated Learning in Glaucoma: A Comprehensive Review and Future Perspectives.青光眼领域的联邦学习:全面综述与未来展望
Ophthalmol Glaucoma. 2025 Jan-Feb;8(1):92-105. doi: 10.1016/j.ogla.2024.08.004. Epub 2024 Aug 29.
6
Medical Imaging Applications of Federated Learning.联邦学习的医学成像应用
Diagnostics (Basel). 2023 Oct 6;13(19):3140. doi: 10.3390/diagnostics13193140.
7
Federated learning for medical image analysis: A survey.用于医学图像分析的联邦学习:一项综述。
Pattern Recognit. 2024 Jul;151. doi: 10.1016/j.patcog.2024.110424. Epub 2024 Mar 12.
8
Privacy preservation for federated learning in health care.医疗保健领域联邦学习中的隐私保护。
Patterns (N Y). 2024 Jul 12;5(7):100974. doi: 10.1016/j.patter.2024.100974.
9
A survey on federated learning: challenges and applications.联邦学习综述:挑战与应用
Int J Mach Learn Cybern. 2023;14(2):513-535. doi: 10.1007/s13042-022-01647-y. Epub 2022 Nov 11.

本文引用的文献

1
Privacy-preserving Federated Brain Tumour Segmentation.隐私保护的联邦脑肿瘤分割
Mach Learn Med Imaging. 2019;11861:133-141. doi: 10.1007/978-3-030-32692-0_16. Epub 2019 Oct 10.
2
Hypernetwork-Based Physics-Driven Personalized Federated Learning for CT Imaging.基于超网络的物理驱动的CT成像个性化联邦学习
IEEE Trans Neural Netw Learn Syst. 2025 Feb;36(2):3136-3150. doi: 10.1109/TNNLS.2023.3338867. Epub 2025 Feb 6.
4
A systematic review of federated learning applications for biomedical data.生物医学数据联合学习应用的系统综述。
PLOS Digit Health. 2022 May 19;1(5):e0000033. doi: 10.1371/journal.pdig.0000033. eCollection 2022 May.
5
Memory-aware curriculum federated learning for breast cancer classification.基于记忆感知的乳腺癌分类联邦学习课程。
Comput Methods Programs Biomed. 2023 Feb;229:107318. doi: 10.1016/j.cmpb.2022.107318. Epub 2022 Dec 20.
8
Specificity-Preserving Federated Learning for MR Image Reconstruction.基于特异性保持的磁共振图像重建的联邦学习。
IEEE Trans Med Imaging. 2023 Jul;42(7):2010-2021. doi: 10.1109/TMI.2022.3202106. Epub 2023 Jun 30.
9
Dynamic-Fusion-Based Federated Learning for COVID-19 Detection.基于动态融合的用于新冠病毒检测的联邦学习
IEEE Internet Things J. 2021 Feb 4;8(21):15884-15891. doi: 10.1109/JIOT.2021.3056185. eCollection 2021 Nov 1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验