Suppr超能文献

深度学习的整体视角:被遗忘的教训与通向主动学习和开放世界学习的桥梁。

A wholistic view of continual learning with deep neural networks: Forgotten lessons and the bridge to active and open world learning.

机构信息

Department of Computer Science, Goethe University, Theodor-W.-Adorno-Platz 1, 60323 Frankfurt, Germany; Department of Computer Science, TU Darmstadt, Karolinenplatz 5, 64289 Darmstadt, Germany.

Department of Computer Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, 03722 Seoul, Republic of Korea.

出版信息

Neural Netw. 2023 Mar;160:306-336. doi: 10.1016/j.neunet.2023.01.014. Epub 2023 Jan 20.

Abstract

Current deep learning methods are regarded as favorable if they empirically perform well on dedicated test sets. This mentality is seamlessly reflected in the resurfacing area of continual learning, where consecutively arriving data is investigated. The core challenge is framed as protecting previously acquired representations from being catastrophically forgotten. However, comparison of individual methods is nevertheless performed in isolation from the real world by monitoring accumulated benchmark test set performance. The closed world assumption remains predominant, i.e. models are evaluated on data that is guaranteed to originate from the same distribution as used for training. This poses a massive challenge as neural networks are well known to provide overconfident false predictions on unknown and corrupted instances. In this work we critically survey the literature and argue that notable lessons from open set recognition, identifying unknown examples outside of the observed set, and the adjacent field of active learning, querying data to maximize the expected performance gain, are frequently overlooked in the deep learning era. Hence, we propose a consolidated view to bridge continual learning, active learning and open set recognition in deep neural networks. Finally, the established synergies are supported empirically, showing joint improvement in alleviating catastrophic forgetting, querying data, selecting task orders, while exhibiting robust open world application.

摘要

如果深度学习方法在专门的测试集上表现良好,那么它们通常被认为是有利的。这种思维方式在连续学习的新兴领域中得到了无缝体现,该领域研究了连续到达的数据。核心挑战被定义为防止以前获得的表示被灾难性遗忘。然而,尽管如此,个别方法的比较仍然是在与现实世界隔离的情况下进行的,通过监测累积的基准测试集性能来进行。封闭世界的假设仍然占主导地位,即模型是在保证数据来源于与训练相同分布的数据上进行评估的。这是一个巨大的挑战,因为众所周知,神经网络在未知和损坏的实例上会提供过度自信的错误预测。在这项工作中,我们批判性地调查了文献,并认为从开放集识别中得到的重要经验教训,即在观察到的集合之外识别未知的例子,以及相邻的主动学习领域,通过查询数据来最大化预期的性能增益,在深度学习时代经常被忽视。因此,我们提出了一个综合的观点来弥合深度学习、主动学习和开放集识别在深度神经网络中的差距。最后,通过实证支持已建立的协同作用,展示了在缓解灾难性遗忘、查询数据、选择任务顺序方面的联合改进,同时表现出了稳健的开放世界应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验