Suppr超能文献

持续主动调整卷积神经网络以减少注释工作。

Active, continual fine tuning of convolutional neural networks for reducing annotation efforts.

机构信息

Department of medical Informatics, Arizona State University, Scottsdale, AZ 85259, USA.

Division of Gastroenterology and Hepatology, Mayo Clinic, Scottsdale, AZ 85259, USA.

出版信息

Med Image Anal. 2021 Jul;71:101997. doi: 10.1016/j.media.2021.101997. Epub 2021 Mar 24.

Abstract

The splendid success of convolutional neural networks (CNNs) in computer vision is largely attributable to the availability of massive annotated datasets, such as ImageNet and Places. However, in medical imaging, it is challenging to create such large annotated datasets, as annotating medical images is not only tedious, laborious, and time consuming, but it also demands costly, specialty-oriented skills, which are not easily accessible. To dramatically reduce annotation cost, this paper presents a novel method to naturally integrate active learning and transfer learning (fine-tuning) into a single framework, which starts directly with a pre-trained CNN to seek "worthy" samples for annotation and gradually enhances the (fine-tuned) CNN via continual fine-tuning. We have evaluated our method using three distinct medical imaging applications, demonstrating that it can reduce annotation efforts by at least half compared with random selection.

摘要

卷积神经网络 (CNN) 在计算机视觉领域的巨大成功在很大程度上归因于大量标注数据集的可用性,例如 ImageNet 和 Places。然而,在医学成像中,创建如此大型的标注数据集具有挑战性,因为标注医学图像不仅繁琐、费力且耗时,而且还需要昂贵的、面向专业的技能,这些技能不容易获得。为了大幅降低标注成本,本文提出了一种新颖的方法,可将主动学习和迁移学习(微调)自然集成到一个单一的框架中,该方法直接从预训练的 CNN 开始,寻找用于标注的“有价值”样本,并通过持续微调逐步增强(微调后的)CNN。我们使用三种不同的医学成像应用评估了我们的方法,结果表明与随机选择相比,它可以至少将标注工作减少一半。

相似文献

2
Fine-tuning Convolutional Neural Networks for Biomedical Image Analysis: Actively and Incrementally.用于生物医学图像分析的卷积神经网络微调:主动式与增量式
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2017 Jul;2017:4761-4772. doi: 10.1109/CVPR.2017.506. Epub 2017 Nov 9.

引用本文的文献

4
Active regression model for clinical grading of COVID-19.用于 COVID-19 临床分级的主动回归模型。
Front Immunol. 2023 Mar 21;14:1141996. doi: 10.3389/fimmu.2023.1141996. eCollection 2023.
7
Seeking an Optimal Approach for Computer-Aided Pulmonary Embolism Detection.寻求计算机辅助肺栓塞检测的最佳方法。
Mach Learn Med Imaging. 2021 Sep;12966:692-702. doi: 10.1007/978-3-030-87589-3_71. Epub 2021 Sep 21.
9

本文引用的文献

3
Parts2Whole: Self-supervised Contrastive Learning via Reconstruction.从部分到整体:通过重建进行自监督对比学习
Domain Adapt Represent Transf Distrib Collab Learn (2020). 2020 Oct;12444:85-95. doi: 10.1007/978-3-030-60548-3_9. Epub 2020 Sep 26.
6
Models Genesis.模型起源。
Med Image Anal. 2021 Jan;67:101840. doi: 10.1016/j.media.2020.101840. Epub 2020 Oct 13.
7
Models Genesis: Generic Autodidactic Models for 3D Medical Image Analysis.模型起源:用于3D医学图像分析的通用自学习模型
Med Image Comput Comput Assist Interv. 2019 Oct;11767:384-393. doi: 10.1007/978-3-030-32251-9_42. Epub 2019 Oct 10.
9
Transformation-Consistent Self-Ensembling Model for Semisupervised Medical Image Segmentation.用于半监督医学图像分割的变换一致自集成模型。
IEEE Trans Neural Netw Learn Syst. 2021 Feb;32(2):523-534. doi: 10.1109/TNNLS.2020.2995319. Epub 2021 Feb 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验