Suppr超能文献

终身 nnU-Net:标准化医学持续学习框架。

Lifelong nnU-Net: a framework for standardized medical continual learning.

机构信息

Technical University of Darmstadt, Karolinenpl. 5, 64289, Darmstadt, Germany.

University Hospital Cologne, Kerpener Str. 62, 50937, Cologne, Germany.

出版信息

Sci Rep. 2023 Jun 9;13(1):9381. doi: 10.1038/s41598-023-34484-2.

Abstract

As the enthusiasm surrounding Deep Learning grows, both medical practitioners and regulatory bodies are exploring ways to safely introduce image segmentation in clinical practice. One frontier to overcome when translating promising research into the clinical open world is the shift from static to continual learning. Continual learning, the practice of training models throughout their lifecycle, is seeing growing interest but is still in its infancy in healthcare. We present Lifelong nnU-Net, a standardized framework that places continual segmentation at the hands of researchers and clinicians. Built on top of the nnU-Net-widely regarded as the best-performing segmenter for multiple medical applications-and equipped with all necessary modules for training and testing models sequentially, we ensure broad applicability and lower the barrier to evaluating new methods in a continual fashion. Our benchmark results across three medical segmentation use cases and five continual learning methods give a comprehensive outlook on the current state of the field and signify a first reproducible benchmark.

摘要

随着深度学习的热度不断攀升,医学从业者和监管机构都在探索如何安全地将图像分割引入临床实践。将有前景的研究转化为临床开放环境的一个需要克服的前沿领域是从静态学习到持续学习的转变。持续学习,即贯穿模型生命周期进行训练的实践,越来越受到关注,但在医疗保健领域仍处于起步阶段。我们提出了 Lifelong nnU-Net,这是一个标准化框架,将持续分割置于研究人员和临床医生的手中。它建立在 nnU-Net 之上——被广泛认为是多种医学应用中性能最佳的分割器——并配备了用于顺序训练和测试模型的所有必要模块,我们确保了广泛的适用性,并降低了以持续方式评估新方法的门槛。我们在三个医学分割用例和五个持续学习方法上的基准结果全面展示了该领域的现状,并标志着第一个可重复的基准。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/052d/10256748/515dd2f76e7f/41598_2023_34484_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验