Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA.
Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, 64287 Darmstadt, Germany.
J Chem Phys. 2023 Jan 28;158(4):044113. doi: 10.1063/5.0126475.
Learning pair interactions from experimental or simulation data is of great interest for molecular simulations. We propose a general stochastic method for learning pair interactions from data using differentiable simulations (DiffSim). DiffSim defines a loss function based on structural observables, such as the radial distribution function, through molecular dynamics (MD) simulations. The interaction potentials are then learned directly by stochastic gradient descent, using backpropagation to calculate the gradient of the structural loss metric with respect to the interaction potential through the MD simulation. This gradient-based method is flexible and can be configured to simulate and optimize multiple systems simultaneously. For example, it is possible to simultaneously learn potentials for different temperatures or for different compositions. We demonstrate the approach by recovering simple pair potentials, such as Lennard-Jones systems, from radial distribution functions. We find that DiffSim can be used to probe a wider functional space of pair potentials compared with traditional methods like iterative Boltzmann inversion. We show that our methods can be used to simultaneously fit potentials for simulations at different compositions and temperatures to improve the transferability of the learned potentials.
从实验或模拟数据中学习对相互作用对于分子模拟非常重要。我们提出了一种使用可微分模拟(DiffSim)从数据中学习对相互作用的通用随机方法。DiffSim 通过分子动力学(MD)模拟定义了基于结构观测值(例如径向分布函数)的损失函数。然后,通过随机梯度下降直接学习相互作用势能,通过 MD 模拟使用反向传播来计算结构损失度量相对于相互作用势能的梯度。这种基于梯度的方法很灵活,可以配置为同时模拟和优化多个系统。例如,可以同时学习不同温度或不同成分的势能。我们通过从径向分布函数中恢复简单的对相互作用势能(如 Lennard-Jones 系统)来证明该方法。我们发现,与迭代玻尔兹曼反演等传统方法相比,DiffSim 可以用于探测对相互作用势能的更广泛的功能空间。我们表明,我们的方法可以用于同时拟合不同成分和温度下的模拟势能,以提高学习势能的可转移性。