Suppr超能文献

递归神经网络在动力系统中的应用:在常微分方程、集体运动和水文建模中的应用。

Recurrent neural networks for dynamical systems: Applications to ordinary differential equations, collective motion, and hydrological modeling.

机构信息

Department of Mathematics and Statistics, Texas A&M University-Corpus Christi, Corpus Christi, Texas 78412, USA.

Department of Physical and Environmental Sciences, Texas A&M University-Corpus Christi, Corpus Christi, Texas 78412, USA.

出版信息

Chaos. 2023 Jan;33(1):013109. doi: 10.1063/5.0088748.

Abstract

Classical methods of solving spatiotemporal dynamical systems include statistical approaches such as autoregressive integrated moving average, which assume linear and stationary relationships between systems' previous outputs. Development and implementation of linear methods are relatively simple, but they often do not capture non-linear relationships in the data. Thus, artificial neural networks (ANNs) are receiving attention from researchers in analyzing and forecasting dynamical systems. Recurrent neural networks (RNNs), derived from feed-forward ANNs, use internal memory to process variable-length sequences of inputs. This allows RNNs to be applicable for finding solutions for a vast variety of problems in spatiotemporal dynamical systems. Thus, in this paper, we utilize RNNs to treat some specific issues associated with dynamical systems. Specifically, we analyze the performance of RNNs applied to three tasks: reconstruction of correct Lorenz solutions for a system with a formulation error, reconstruction of corrupted collective motion trajectories, and forecasting of streamflow time series possessing spikes, representing three fields, namely, ordinary differential equations, collective motion, and hydrological modeling, respectively. We train and test RNNs uniquely in each task to demonstrate the broad applicability of RNNs in the reconstruction and forecasting the dynamics of dynamical systems.

摘要

经典的时空动力系统求解方法包括自回归综合移动平均等统计方法,这些方法假设系统先前输出之间存在线性和静态关系。线性方法的开发和实施相对简单,但它们通常无法捕捉数据中的非线性关系。因此,人工神经网络 (ANNs) 在分析和预测动力系统方面引起了研究人员的关注。递归神经网络 (RNNs) 源自前馈神经网络,使用内部存储器来处理输入的可变长度序列。这使得 RNN 能够适用于解决时空动力系统中各种各样的问题。因此,在本文中,我们利用 RNN 来处理与动力系统相关的一些具体问题。具体来说,我们分析了 RNN 应用于三个任务的性能:对具有公式错误的系统的正确 Lorenz 解进行重建、对受污染的集体运动轨迹进行重建,以及对具有尖峰的流量时间序列进行预测,分别代表常微分方程、集体运动和水文建模三个领域。我们在每个任务中单独训练和测试 RNN,以展示 RNN 在重建和预测动力系统动态方面的广泛适用性。

相似文献

8
The Kernel Adaptive Autoregressive-Moving-Average Algorithm.核自适应自回归移动平均算法。
IEEE Trans Neural Netw Learn Syst. 2016 Feb;27(2):334-46. doi: 10.1109/TNNLS.2015.2418323. Epub 2015 Apr 28.

本文引用的文献

4
Adversarial Examples: Attacks and Defenses for Deep Learning.对抗样本:深度学习的攻击与防御。
IEEE Trans Neural Netw Learn Syst. 2019 Sep;30(9):2805-2824. doi: 10.1109/TNNLS.2018.2886017. Epub 2019 Jan 14.
7
Recurrent Neural Networks are universal approximators.循环神经网络是通用逼近器。
Int J Neural Syst. 2007 Aug;17(4):253-63. doi: 10.1142/S0129065707001111.
8
Novel type of phase transition in a system of self-driven particles.自驱动粒子系统中的新型相变
Phys Rev Lett. 1995 Aug 7;75(6):1226-1229. doi: 10.1103/PhysRevLett.75.1226.
9
Long short-term memory.长短期记忆
Neural Comput. 1997 Nov 15;9(8):1735-80. doi: 10.1162/neco.1997.9.8.1735.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验