Lu James, Deng Kaiwen, Zhang Xinyuan, Liu Gengbo, Guan Yuanfang
Modeling & Simulation/Clinical Pharmacology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA.
Ann Arbor Algorithms Inc, 3001 Plymouth Road, Ann Arbor, MI 48105, USA.
iScience. 2021 Jun 30;24(7):102804. doi: 10.1016/j.isci.2021.102804. eCollection 2021 Jul 23.
Forecasting pharmacokinetics (PK) for individual patients is a fundamental problem in clinical pharmacology. One key challenge is that PK models constructed using data from one dosing regimen must predict PK data for different dosing regimen(s). We propose a deep learning approach based on neural ordinary differential equations (neural-ODE) and tested its generalizability against a variety of alternative models. Specifically, we used the PK data from two different treatment regimens of trastuzumab emtansine. The models performed similarly when the training and the test sets come from the same dosing regimen. However, for predicting a new treatment regimen, the neural-ODE model showed substantially better performance. To date, neural-ODE is the most accurate PK model in predicting untested treatment regimens. This study represents the first time neural-ODE has been applied to PK modeling and the results suggest it is a widely applicable algorithm with the potential to impact future studies.
预测个体患者的药代动力学(PK)是临床药理学中的一个基本问题。一个关键挑战是,使用一种给药方案的数据构建的PK模型必须预测不同给药方案的PK数据。我们提出了一种基于神经常微分方程(neural-ODE)的深度学习方法,并针对各种替代模型测试了其通用性。具体而言,我们使用了来自曲妥珠单抗恩坦辛两种不同治疗方案的PK数据。当训练集和测试集来自相同给药方案时,各模型表现相似。然而,对于预测新的治疗方案,神经常微分方程模型表现出明显更好的性能。迄今为止,神经常微分方程是预测未经测试治疗方案时最准确的PK模型。本研究是神经常微分方程首次应用于PK建模,结果表明它是一种具有广泛适用性的算法,有可能影响未来的研究。