Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
Wuhan Britain-China School, Wuhan 430022, China.
ACS Nano. 2023 Feb 14;17(3):2537-2553. doi: 10.1021/acsnano.2c10351. Epub 2023 Feb 2.
As mesenchymal stem-cell-derived small extracellular vesicles (MSC-sEVs) have been widely applied in treatment of degenerative diseases, it is essential to improve their cargo delivery efficiency in specific microenvironments of lesions. However, the interaction between the microenvironment of recipient cells and MSC-sEVs remains poorly understood. Herein, we find that the cargo delivery efficiency of MSC-sEVs was significantly reduced under hypoxia in inflammaging nucleus pulposus cells due to activated endocytic recycling of MSC-sEVs. Hypoxia-inducible factor-1 (HIF-1)-induced upregulated RCP (also known as RAB11FIP1) is shown to promote the Rab11a-dependent recycling of internalized MSC-sEVs under hypoxia via enhancing the interaction between Rab11a and MSC-sEV. Based on this finding, si-RCP is loaded into MSC-sEVs using electroporation to overcome the hypoxic microenvironment of intervertebral disks. The engineered MSC-sEVs significantly inhibit the endocytic recycling process and exhibit higher delivery efficiency under hypoxia. In a rat model of intervertebral disk degeneration (IDD), the si-RCP-loaded MSC-sEVs successfully treat IDD with improved regenerative capacity compared with natural MSC-sEV. Collectively, the findings illustrate the intracellular traffic mechanism of MSC-sEVs under hypoxia and demonstrate that the therapeutic capacity of MSC-sEVs can be improved via inhibiting endocytic recycling. This modifying strategy may further facilitate the application of extracellular vesicles in hypoxic tissues.
由于间充质干细胞来源的小细胞外囊泡(MSC-sEVs)已广泛应用于退行性疾病的治疗,因此必须提高其在病变特定微环境中的货物输送效率。然而,受体细胞的微环境与 MSC-sEVs 之间的相互作用仍知之甚少。在此,我们发现炎症性核髓核细胞在缺氧条件下,MSC-sEV 的货物输送效率显著降低,这是由于 MSC-sEV 的内吞体再循环被激活。缺氧诱导因子 1(HIF-1)诱导的 RCP(也称为 RAB11FIP1)上调被证明通过增强 Rab11a 和 MSC-sEV 之间的相互作用,在缺氧条件下促进内吞的 MSC-sEV 的 Rab11a 依赖性再循环。基于这一发现,使用电穿孔将 si-RCP 载入 MSC-sEV 中,以克服椎间盘的缺氧微环境。工程 MSC-sEV 显著抑制内吞体再循环过程,并在缺氧下表现出更高的输送效率。在椎间盘退变(IDD)大鼠模型中,与天然 MSC-sEV 相比,负载 si-RCP 的 MSC-sEV 成功治疗了 IDD,具有改善的再生能力。总之,这些发现说明了缺氧下 MSC-sEV 的细胞内运输机制,并证明通过抑制内吞体再循环可以提高 MSC-sEV 的治疗能力。这种修饰策略可能进一步促进细胞外囊泡在缺氧组织中的应用。