Suppr超能文献

一种质子线传能(LET)优化的迭代凸松弛方法。

An iterative convex relaxation method for proton LET optimization.

机构信息

Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, KS 66160, United States of America.

出版信息

Phys Med Biol. 2023 Feb 20;68(5). doi: 10.1088/1361-6560/acb88d.

Abstract

A constant relative biological effectiveness of 1.1 in current clinical practice of proton radiotherapy (RT) is a crude approximation and may severely underestimate the biological dose from proton RT to normal tissues, especially near the treatment target at the end of Bragg peaks that exhibits high linear energy transfer (LET). LET optimization can account for biological effectiveness of protons during treatment planning, for minimizing biological proton dose and hot spots to normal tissues. However, the LET optimization is usually nonlinear and nonconvex to solve, for which this work will develop an effective optimization method based on iterative convex relaxation (ICR).: In contrast to the generic nonlinear optimization method, such as Quasi-Newton (QN) method, that does not account for specific characteristics of LET optimization, ICR is tailored to LET modeling and optimization in order to effectively and efficiently solve the LET problem. Specifically, nonlinear dose-averaged LET term is iteratively linearized and becomes convex during ICR, while nonconvex dose-volume constraint and minimum-monitor-unit constraint are also handled by ICR, so that the solution for LET optimization is obtained by solving a sequence of convex and linearized convex subproblems. Since the high LET mostly occurs near the target, a 1 cm normal-tissue expansion of clinical target volume (CTV) (excluding CTV), i.e. CTV1cm, is defined to as an auxiliary structure during treatment planning, where LET is minimized.: ICR was validated in comparison with QN for abdomen, lung, and head-and-neck cases. ICR was effective for LET optimization, as ICR substantially reduced the LET and biological dose in CTV1cm the ring, with preserved dose conformality to CTV. Compared to QN, ICR had smaller LET, physical and biological dose in CTV1cm, and higher conformity index values; ICR was also computationally more efficient, which was about 3 times faster than QN.: A LET-specific optimization method based on ICR has been developed for solving proton LET optimization, which has been shown to be more computationally efficient than generic nonlinear optimizer via QN, with better plan quality in terms of LET, biological and physical dose conformality.

摘要

在当前质子放射治疗(RT)的临床实践中,相对生物学效应(RBE)为 1.1 是一种粗略的近似值,可能严重低估了质子 RT 对正常组织的生物学剂量,特别是在布拉格峰末端的治疗靶区附近,那里具有高线性能量转移(LET)。在治疗计划中,LET 优化可以考虑质子的生物学效应,以最小化正常组织的生物学质子剂量和热点。然而,LET 优化通常是非线性和非凸的,因此这项工作将开发一种基于迭代凸松弛(ICR)的有效优化方法。与不考虑 LET 优化具体特征的通用非线性优化方法(如拟牛顿法(QN))相比,ICR 针对 LET 建模和优化进行了定制,以便有效地解决 LET 问题。具体而言,在 ICR 中,非线性剂量平均 LET 项被迭代线性化并变得凸,同时非凸剂量-体积约束和最小监测单元约束也由 ICR 处理,因此通过求解一系列凸和线性化凸子问题来获得 LET 优化的解。由于高 LET 主要发生在靶区附近,因此在治疗计划中定义了临床靶区体积(CTV)(不包括 CTV)的 1 厘米正常组织扩展,即 CTV1cm,作为辅助结构,其中 LET 最小化。在与 QN 进行比较时,ICR 在腹部、肺部和头颈部病例中得到了验证。ICR 对 LET 优化是有效的,因为 ICR 大大降低了 CTV1cm 环中的 LET 和生物学剂量,同时保持了对 CTV 的剂量适形性。与 QN 相比,ICR 的 LET、物理和生物学剂量在 CTV1cm 中更小,适形指数值更高;ICR 也更高效,大约比 QN 快 3 倍。已经开发了一种基于 ICR 的 LET 特定优化方法来解决质子 LET 优化问题,与通用非线性优化器 QN 相比,该方法在计算效率上具有优势,在 LET、生物学和物理剂量适形性方面具有更好的计划质量。

相似文献

1
An iterative convex relaxation method for proton LET optimization.
Phys Med Biol. 2023 Feb 20;68(5). doi: 10.1088/1361-6560/acb88d.
3
Minimum-monitor-unit optimization via a stochastic coordinate descent method.
Phys Med Biol. 2022 Jan 17;67(1). doi: 10.1088/1361-6560/ac4212.
4
Biological optimization for hybrid proton-photon radiotherapy.
Phys Med Biol. 2024 May 30;69(11). doi: 10.1088/1361-6560/ad4d51.
5
Linear energy transfer incorporated intensity modulated proton therapy optimization.
Phys Med Biol. 2017 Dec 19;63(1):015013. doi: 10.1088/1361-6560/aa9a2e.
6
7
Reoptimization of Intensity Modulated Proton Therapy Plans Based on Linear Energy Transfer.
Int J Radiat Oncol Biol Phys. 2016 Dec 1;96(5):1097-1106. doi: 10.1016/j.ijrobp.2016.08.038. Epub 2016 Sep 1.
9
Linear energy transfer-guided optimization in intensity modulated proton therapy: feasibility study and clinical potential.
Int J Radiat Oncol Biol Phys. 2013 Sep 1;87(1):216-22. doi: 10.1016/j.ijrobp.2013.05.013. Epub 2013 Jun 19.

本文引用的文献

1
Energy layer optimization via energy matrix regularization for proton spot-scanning arc therapy.
Med Phys. 2022 Sep;49(9):5752-5762. doi: 10.1002/mp.15836. Epub 2022 Jul 25.
2
Minimum-monitor-unit optimization via a stochastic coordinate descent method.
Phys Med Biol. 2022 Jan 17;67(1). doi: 10.1088/1361-6560/ac4212.
3
4
Linear Energy Transfer Incorporated Spot-Scanning Proton Arc Therapy Optimization: A Feasibility Study.
Front Oncol. 2021 Jul 12;11:698537. doi: 10.3389/fonc.2021.698537. eCollection 2021.
5
A Critical Review of LET-Based Intensity-Modulated Proton Therapy Plan Evaluation and Optimization for Head and Neck Cancer Management.
Int J Part Ther. 2021 Jun 25;8(1):36-49. doi: 10.14338/IJPT-20-00049.1. eCollection 2021 Summer.
7
Simultaneous dose and dose rate optimization (SDDRO) for FLASH proton therapy.
Med Phys. 2020 Dec;47(12):6388-6395. doi: 10.1002/mp.14531. Epub 2020 Nov 8.
9
Linear energy transfer weighted beam orientation optimization for intensity-modulated proton therapy.
Med Phys. 2021 Jan;48(1):57-70. doi: 10.1002/mp.14329. Epub 2020 Jul 13.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验