Suppr超能文献

使用自动旋转成像系统对三维根系结构进行量化。

Quantification of the three-dimensional root system architecture using an automated rotating imaging system.

作者信息

Wu Qian, Wu Jie, Hu Pengcheng, Zhang Weixin, Ma Yuntao, Yu Kun, Guo Yan, Cao Jing, Li Huayong, Li Baiming, Yao Yuyang, Cao Hongxin, Zhang Wenyu

机构信息

IGRB-IAI Joint Laboratory of Germplasm Resources Innovation & Information Utilization, YuanQi-IAI Joint Laboratory for Agricultural Digital Twin, Institute of Agricultural Information, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China.

Plant Phenomics Research Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.

出版信息

Plant Methods. 2023 Feb 2;19(1):11. doi: 10.1186/s13007-023-00988-1.

Abstract

BACKGROUND

Crop breeding based on root system architecture (RSA) optimization is an essential factor for improving crop production in developing countries. Identification, evaluation, and selection of root traits of soil-grown crops require innovations that enable high-throughput and accurate quantification of three-dimensional (3D) RSA of crops over developmental time.

RESULTS

We proposed an automated imaging system and 3D imaging data processing pipeline to quantify the 3D RSA of soil-grown individual plants across seedlings to the mature stage. A multi-view automated imaging system composed of a rotary table and an imaging arm with 12 cameras mounted with a combination of fan-shaped and vertical distribution was developed to obtain 3D image data of roots grown on a customized root support mesh. A 3D imaging data processing pipeline was developed to quantify the 3D RSA based on the point cloud generated from multi-view images. The global architecture of root systems can be quantified automatically. Detailed analysis of the reconstructed 3D root model also allowed us to investigate the Spatio-temporal distribution of roots. A method combining horizontal slicing and iterative erosion and dilation was developed to automatically segment different root types, and identify local root traits (e.g., length, diameter of the main root, and length, diameter, initial angle, and the number of nodal roots or lateral roots). One maize (Zea mays L.) cultivar and two rapeseed (Brassica napus L.) cultivars at different growth stages were selected to test the performance of the automated imaging system and 3D imaging data processing pipeline.

CONCLUSIONS

The results demonstrated the capabilities of the proposed imaging and analytical system for high-throughput phenotyping of root traits for both monocotyledons and dicotyledons across growth stages. The proposed system offers a potential tool to further explore the 3D RSA for improving root traits and agronomic qualities of crops.

摘要

背景

基于根系结构(RSA)优化的作物育种是发展中国家提高作物产量的关键因素。识别、评估和选择土壤种植作物的根系性状需要创新技术,以实现对作物三维(3D)RSA在发育过程中的高通量和精确量化。

结果

我们提出了一种自动成像系统和3D成像数据处理流程,用于量化土壤种植的单株植物从幼苗期到成熟期的3D RSA。开发了一种多视角自动成像系统,该系统由一个转台和一个装有12个摄像头的成像臂组成,摄像头呈扇形和垂直分布组合安装,以获取在定制的根系支撑网上生长的根系的3D图像数据。开发了一种3D成像数据处理流程,用于基于多视角图像生成的点云量化3D RSA。根系的整体结构可以自动量化。对重建的3D根系模型的详细分析还使我们能够研究根系的时空分布。开发了一种结合水平切片和迭代腐蚀与膨胀的方法,以自动分割不同的根系类型,并识别局部根系性状(例如,主根的长度、直径,以及节根或侧根的长度、直径、初始角度和数量)。选择了一个处于不同生长阶段的玉米(Zea mays L.)品种和两个油菜(Brassica napus L.)品种来测试自动成像系统和3D成像数据处理流程的性能。

结论

结果证明了所提出的成像和分析系统在高通量表型分析单子叶植物和双子叶植物整个生长阶段根系性状方面的能力。所提出的系统为进一步探索3D RSA以改善作物根系性状和农艺品质提供了一个潜在工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/499f/9896698/2b10126ed4a1/13007_2023_988_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验