Gerth Stefan, Claußen Joelle, Eggert Anja, Wörlein Norbert, Waininger Michael, Wittenberg Thomas, Uhlmann Norman
Development Center X-Ray Technology (EZRT), Fraunhofer Institute for Integrated Systems (IIS), Flugplatzstraße 75, 90768 Fürth, Germany.
Biomedical Engineering Department, Fraunhofer Institute for Integrated Systems (IIS), Am Wolfsmantel 33 11, 91058 Erlangen, Germany.
Plant Phenomics. 2021 Feb 15;2021:8747930. doi: 10.34133/2021/8747930. eCollection 2021.
Computed X-ray tomography (CTX) is a high-end nondestructive approach for the visual assessment of root architecture in soil. Nevertheless, in order to evaluate high-resolution CTX data of root architectures, manual segmentation of the depicted root systems from large-scale volume data is currently necessary, which is both time consuming and error prone. The duration of such a segmentation is of importance, especially for time-resolved growth analysis, where several instances of a plant need to be segmented and evaluated. Specifically, in our application, the contrast between soil and root data varies due to different growth stages and watering situations at the time of scanning. Additionally, the root system itself is expanding in length and in the diameter of individual roots.
For semiautomated and robust root system segmentation from CTX data, we propose the approach, which is an extension of Frangi's "multi-scale vesselness" method and integrates a 3D local variance. It allows a precise delineation of roots with diameters down to several m in pots with varying diameters. Additionally, is not limited to the segmentation of small below-ground organs, but is also able to handle storage roots with a diameter larger than 40 voxels.
Using CTX volume data of full-grown bean plants as well as time-resolved (3D + time) growth studies of cassava plants, produces similar (and much faster) results compared to manual segmentation of the regarded root architectures. Furthermore, enables the user to obtain traits not possible to be calculated before, such as total root volume ( ), total root length ( ), root volume over depth, root growth angles ( , , and ), root surrounding soil density , or form fraction . . The proposed tool can provide a higher efficiency for the semiautomatic high-throughput assessment of the root architectures of different types of plants from large-scale CTX. Furthermore, for all datasets within a growth experiment, only a single set of parameters is needed. Thus, the proposed tool can be used for a wide range of growth experiments in the field of plant phenotyping.
计算机X射线断层扫描(CTX)是一种用于可视化评估土壤中根系结构的高端无损方法。然而,为了评估根系结构的高分辨率CTX数据,目前需要从大规模体数据中手动分割所描绘的根系,这既耗时又容易出错。这种分割的持续时间很重要,特别是对于时间分辨生长分析,其中需要分割和评估植物的多个实例。具体而言,在我们的应用中,由于扫描时的不同生长阶段和浇水情况,土壤和根系数据之间的对比度会有所变化。此外,根系本身在长度和单个根的直径上都在扩展。
为了从CTX数据中进行半自动且稳健的根系分割,我们提出了 方法,它是对Frangi的“多尺度血管性”方法的扩展,并集成了三维局部方差。它能够精确描绘直径小至几毫米的根系,适用于不同直径的花盆。此外, 不仅限于分割地下小器官,还能够处理直径大于40体素的贮藏根。
使用成熟豆类植物的CTX体数据以及木薯植物的时间分辨(三维+时间)生长研究,与手动分割所考虑的根系结构相比, 产生了相似(且快得多)的结果。此外, 使用户能够获得以前无法计算的特征,例如总根体积( )、总根长度( )、根体积随深度的变化、根生长角度( 、 和 )、根周围土壤密度 或形态分数 。所提出的 工具可以为从大规模CTX中半自动高通量评估不同类型植物的根系结构提供更高的效率。此外,对于生长实验中的所有数据集,只需要一组参数。因此,所提出的工具可用于植物表型领域的广泛生长实验。