Chen Yuanxiao, Zhang Xiao-Fei, Ou-Yang Le
Guangdong Key Laboratory of Intelligent Information Processing, Shenzhen Key Laboratory of Media Security, and Guangdong Laboratory of Artificial Intelligence and Digital Economy(SZ), Shenzhen University, Shenzhen, China.
School of Mathematics and Statistics & Hubei Key Laboratory of Mathematical Sciences, Central China Normal University, Wuhan, China.
Comput Struct Biotechnol J. 2023 Jan 18;21:974-990. doi: 10.1016/j.csbj.2023.01.017. eCollection 2023.
Cancer is a complex disease caused primarily by genetic variants. Reconstructing gene networks within tumors is essential for understanding the functional regulatory mechanisms of carcinogenesis. Advances in high-throughput sequencing technologies have provided tremendous opportunities for inferring gene networks via computational approaches. However, due to the heterogeneity of the same cancer type and the similarities between different cancer types, it remains a challenge to systematically investigate the commonalities and specificities between gene networks of different cancer types, which is a crucial step towards precision cancer diagnosis and treatment. In this study, we propose a new sparse regularized multi-layer decomposition graphical model to jointly estimate the gene networks of multiple cancer types. Our model can handle various types of gene expression data and decomposes each cancer-type-specific network into three components, i.e., globally shared, partially shared and cancer-type-unique components. By identifying the globally and partially shared gene network components, our model can explore the heterogeneous similarities between different cancer types, and our identified cancer-type-unique components can help to reveal the regulatory mechanisms unique to each cancer type. Extensive experiments on synthetic data illustrate the effectiveness of our model in joint estimation of multiple gene networks. We also apply our model to two real data sets to infer the gene networks of multiple cancer subtypes or cell lines. By analyzing our estimated globally shared, partially shared, and cancer-type-unique components, we identified a number of important genes associated with common and specific regulatory mechanisms across different cancer types.
癌症是一种主要由基因变异引起的复杂疾病。重建肿瘤内的基因网络对于理解致癌作用的功能调节机制至关重要。高通量测序技术的进步为通过计算方法推断基因网络提供了巨大机遇。然而,由于同一癌症类型的异质性以及不同癌症类型之间的相似性,系统研究不同癌症类型基因网络之间的共性和特异性仍然是一项挑战,而这是迈向精准癌症诊断和治疗的关键一步。在本研究中,我们提出了一种新的稀疏正则化多层分解图形模型,用于联合估计多种癌症类型的基因网络。我们的模型能够处理各种类型的基因表达数据,并将每种癌症类型特异性网络分解为三个组成部分,即全局共享、部分共享和癌症类型独特的组成部分。通过识别全局和部分共享的基因网络组成部分,我们的模型可以探索不同癌症类型之间的异质相似性,而我们识别出的癌症类型独特组成部分有助于揭示每种癌症类型特有的调节机制。对合成数据的大量实验说明了我们的模型在联合估计多个基因网络方面的有效性。我们还将我们的模型应用于两个真实数据集,以推断多种癌症亚型或细胞系的基因网络。通过分析我们估计的全局共享、部分共享和癌症类型独特的组成部分,我们确定了许多与不同癌症类型的共同和特定调节机制相关的重要基因。