Suppr超能文献

scLink:从单细胞表达数据推断稀疏基因共表达网络。

scLink: Inferring Sparse Gene Co-expression Networks from Single-cell Expression Data.

机构信息

Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.

Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.

出版信息

Genomics Proteomics Bioinformatics. 2021 Jun;19(3):475-492. doi: 10.1016/j.gpb.2020.11.006. Epub 2021 Jul 10.

Abstract

A system-level understanding of the regulation and coordination mechanisms of gene expression is essential for studying the complexity of biological processes in health and disease. With the rapid development of single-cell RNA sequencing technologies, it is now possible to investigate gene interactions in a cell type-specific manner. Here we propose the scLink method, which uses statistical network modeling to understand the co-expression relationships among genes and construct sparse gene co-expression networks from single-cell gene expression data. We use both simulation and real data studies to demonstrate the advantages of scLink and its ability to improve single-cell gene network analysis. The scLink R package is available at https://github.com/Vivianstats/scLink.

摘要

系统层面上理解基因表达的调控和协调机制对于研究健康和疾病状态下生物过程的复杂性至关重要。随着单细胞 RNA 测序技术的快速发展,现在可以以细胞类型特异性的方式研究基因相互作用。在这里,我们提出了 scLink 方法,它使用统计网络建模来理解基因之间的共表达关系,并从单细胞基因表达数据中构建稀疏的基因共表达网络。我们使用模拟和真实数据研究来证明 scLink 的优势及其提高单细胞基因网络分析的能力。scLink R 包可在 https://github.com/Vivianstats/scLink 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4467/8896229/aa002f5058c6/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验