Xue Yi, Ren David, Waller Laura
Department of Biomedical Engineering, University of California, Davis, CA 95616, USA.
Department of Electrical Engineering & Computer Sciences, University of California, Berkeley, CA 94720, USA.
Biomed Opt Express. 2022 Oct 17;13(11):5900-5908. doi: 10.1364/BOE.456621. eCollection 2022 Nov 1.
Fluorescence microscopy is a powerful tool for imaging biological samples with molecular specificity. In contrast, phase microscopy provides label-free measurement of the sample's refractive index (RI), which is an intrinsic optical property that quantitatively relates to cell morphology, mass, and stiffness. Conventional imaging techniques measure either the labeled fluorescence (functional) information the label-free RI (structural) information, though it may be valuable to have both. For example, biological tissues have heterogeneous RI distributions, causing sample-induced scattering that degrades the fluorescence image quality. When both fluorescence and 3D RI are measured, one can use the RI information to digitally correct multiple-scattering effects in the fluorescence image. Here, we develop a new computational multi-modal imaging method based on epi-mode microscopy that reconstructs both 3D fluorescence and 3D RI from a single dataset. We acquire dozens of fluorescence images, each 'illuminated' by a single fluorophore, then solve an inverse problem with a multiple-scattering forward model. We experimentally demonstrate our method for epi-mode 3D RI imaging and digital correction of multiple-scattering effects in fluorescence images.
荧光显微镜是一种用于对生物样品进行具有分子特异性成像的强大工具。相比之下,相显微镜提供了对样品折射率(RI)的无标记测量,折射率是一种与细胞形态、质量和硬度定量相关的固有光学特性。传统成像技术要么测量标记的荧光(功能)信息,要么测量无标记的RI(结构)信息,尽管同时拥有这两者可能很有价值。例如,生物组织具有异质的RI分布,会导致样品引起的散射,从而降低荧光图像质量。当同时测量荧光和3D RI时,可以使用RI信息对荧光图像中的多重散射效应进行数字校正。在这里,我们基于落射模式显微镜开发了一种新的计算多模态成像方法,该方法从单个数据集中重建3D荧光和3D RI。我们获取了数十张荧光图像,每张图像由单个荧光团“照亮”,然后使用多重散射正向模型解决一个反问题。我们通过实验证明了我们的落射模式3D RI成像方法以及对荧光图像中多重散射效应的数字校正方法。