Suppr超能文献

化学电阻式氢传感器:基础、最新进展与挑战

Chemiresistive Hydrogen Sensors: Fundamentals, Recent Advances, and Challenges.

作者信息

Koo Won-Tae, Cho Hee-Jin, Kim Dong-Ha, Kim Yoon Hwa, Shin Hamin, Penner Reginald M, Kim Il-Doo

机构信息

Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.

Department of Chemistry, University of California, Irvine, California 92697-2025, United States.

出版信息

ACS Nano. 2020 Nov 24;14(11):14284-14322. doi: 10.1021/acsnano.0c05307. Epub 2020 Oct 30.

Abstract

Hydrogen (H) is one of the next-generation energy sources because it is abundant in nature and has a high combustion efficiency that produces environmentally benign products (HO). However, H/air mixtures are explosive at H concentrations above 4%, thus any leakage of H must be rapidly and reliably detected at much lower concentrations to ensure safety. Among the various types of H sensors, chemiresistive sensors are one of the most promising sensing systems due to their simplicity and low cost. This review highlights the advances in H chemiresistors, including metal-, semiconducting metal oxide-, carbon-based materials, and other materials. The underlying sensing mechanisms for different types of materials are discussed, and the correlation of sensing performances with nanostructures, surface chemistry, and electronic properties is presented. In addition, the discussion of each material emphasizes key advances and strategies to develop superior H sensors. Furthermore, recent key advances in other types of H sensors are briefly discussed. Finally, the review concludes with a brief outlook, perspective, and future directions.

摘要

氢(H)是下一代能源之一,因为它在自然界中储量丰富,且燃烧效率高,燃烧产物对环境无害(HO)。然而,氢气与空气的混合物在氢气浓度高于4%时具有爆炸性,因此必须在低得多的浓度下快速、可靠地检测到任何氢气泄漏,以确保安全。在各种类型的氢气传感器中,化学电阻传感器因其简单性和低成本而成为最有前途的传感系统之一。本文综述了氢气化学电阻传感器的研究进展,包括金属基、半导体金属氧化物基、碳基材料及其他材料。讨论了不同类型材料的潜在传感机制,并阐述了传感性能与纳米结构、表面化学和电子特性之间的相关性。此外,对每种材料的讨论都强调了开发高性能氢气传感器的关键进展和策略。此外,还简要讨论了其他类型氢气传感器最近的关键进展。最后,本文以简要的展望、观点和未来方向作为总结。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验