Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran16846-13114, Iran.
Inorg Chem. 2023 Feb 13;62(6):2530-2547. doi: 10.1021/acs.inorgchem.2c02634. Epub 2023 Feb 3.
This study describes an efficient antimicrobial drug delivery system composed of iron oxide magnetic nanoparticles (FeO NPs) coated by an MOF-199 network. Then, the prepared vancomycin (VAN)-loaded carrier was fully packed in a lattice of beta-cyclodextrin (BCD). For cell adhesion, beta-cyclodextrin has been functionalized with guanidine (Gn) groups within in situ synthetic processes. Afterward, drug loading efficiency and the release patterns were investigated through precise analytical methods. Confocal microscopy has shown that the prepared cargo (formulated as [VAN@FeO/MOF-199]BCD-Gn) could be attached to the () and () bacterial cells in a higher rate than the individual VAN. The presented system considerably increased the antibacterial effects of the VAN with a lower dosage of drug. The cellular experiments such as the zone of inhibition and optical density (OD) have confirmed the enhanced antibacterial effect of the designed cargo. In addition, the MIC/MBC (minimum inhibitory and bactericidal concentrations) values have been estimated for the prepared cargo compared to the individual VAN, revealing high antimicrobial potency of the VAN@FeO/MOF-199]BCD-Gn cargo.
本研究描述了一种由氧化铁磁性纳米粒子 (FeO NPs) 包裹的 MOF-199 网络组成的高效抗菌药物输送系统。然后,将制备的万古霉素 (VAN) 负载载体完全填充在 β-环糊精 (BCD) 的晶格中。为了细胞黏附,β-环糊精在原位合成过程中用胍 (Gn) 基团进行了功能化。随后,通过精确的分析方法研究了载药效率和释放模式。共聚焦显微镜显示,所制备的货物([VAN@FeO/MOF-199]BCD-Gn)可以比单独的 VAN 以更高的速率附着在()和()细菌细胞上。与单独的 VAN 相比,该系统大大提高了 VAN 的抗菌效果,同时降低了药物剂量。抑菌圈和光密度 (OD) 等细胞实验证实了设计货物的增强抗菌效果。此外,与单独的 VAN 相比,还对制备的货物进行了最小抑菌浓度 (MIC)/最小杀菌浓度 (MBC) 值的评估,结果表明 VAN@FeO/MOF-199]BCD-Gn 货物具有很高的抗菌效力。